线程池总结
title: 线程池总结 date: 2018-04-02 00:00:00 tags:
- Java category:
- Java description: — 线程池总结
前言
Github:https://github.com/HealerJean
一、线程池参数
⬤ 线程池的概念是
Executor
这个接口ExecutorService
继承了它,具体实现为ThreadPoolExecutor
类,学习Java中的线程池,就可以直接学习对线程池的配置,就是对ThreadPoolExecutor
构造函数的参数的配置⬤
Executors
类提供工厂方法用来创建不同类型的线程池
public interface ExecutorService extends Executor {}
public abstract class AbstractExecutorService implements ExecutorService {}
public class ThreadPoolExecutor extends AbstractExecutorService {}
public interface ScheduledExecutorService extends ExecutorService {}
public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService {}
1、参数解释
1)int corePoolSize
:线程池中核心线程数最大值
核心线程:线程池新建线程的时候,如果当前线程总数小于
corePoolSize
,则新建的是核心线程,如果超过corePoolSize
,则新建的是非核心线程。核心线程默认情况下会一直存活在线程池中,即使这个核心线程啥也不干(闲置状态)。
如果指定
ThreadPoolExecutor
的allowCoreThreadTimeOut
这个属性为true
,那么核心线程如果不干活(闲置状态)的话,超过一定时间(时长下面参数决定),就会被销毁掉。
2)int maximumPoolSize
: 线程池中线程总数最大值
线程总数 = 核心线程数 + 非核心线程数。
3)long keepAliveTime
:线程池中非核心线程闲置超时时长
一个非核心线程,如果不干活(闲置状态)的时长超过这个参数所设定的时长,就会被销毁掉,
如果设置
allowCoreThreadTimeOut = true
,则会作用于核心线程。
4)imeUnit unit
:keepAliveTime
的单位
TimeUnit
是一个枚举类型,其包括: NANOSECONDS :
1微毫秒 = 1微秒 / 1000 MICROSECONDS :
1微秒 = 1毫秒 / 1000 MILLISECONDS :
1毫秒 = 1秒 /1000 SECONDS :
秒 MINUTES :
分 HOURS :
小时 DAYS :
天
5)BlockingQueue workQueue
:该线程池中的任务队列:维护着等待执行的Runnable
对象
当所有的核心线程都在干活时,新添加的任务会被添加到这个队列中等待处理,如果队列满了,则新建非核心线程执行任务。 常用的
workQueue
类型:
发现如果阻塞队列数量 > 0,则使用
LinkedBlockingQueue
,否则使用SynchronousQueue
。
a、LinkedBlockingQueue
:
1、这个队列接收到任务的时候,如果当前线程数小于核心线程数,则新建线程(核心线程)处理任务;(先新建核心线程)
2、如果当前线程数等于核心线程数,则进入队列等待。由于这个队列没有最大值限制,即所有超过核心线程数的任务都将被添加到队列中,这也就导致了
maximumPoolSize
的设定失效,因为总线程数永远不会超过corePoolSize
6)ThreadFactory threadFactory
:线程工厂,创建线程的方式
创建线程的方式,这是一个接口,你new他的时候需要实现他的Thread new Thread(Runnable r)方法,一般用不上。
7)RejectedExecutionHandler handler
:任务拒绝/饱和策略
RejectedExecutionHandler
:任务拒绝/饱和策略,这玩意儿就是抛出异常专用的,下面会通过介绍shotDowm
,shotDownNow
来解释拒绝的过程
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class ExecutorDemo {
private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public static void main(String[] args) {
int corePoolSize = 1;
int maximumPoolSize = 1;
BlockingQueue queue = new ArrayBlockingQueue<Runnable>(1);
ThreadPoolExecutor pool = new ThreadPoolExecutor(corePoolSize, maximumPoolSize,
0, TimeUnit.SECONDS, queue ) ;
pool.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy ());
for(int i=0;i<10;i++){
final int index = i;
pool.submit(new Runnable(){
@Override
public void run() {
log(Thread.currentThread().getName()+"begin run task :"+index);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
log(Thread.currentThread().getName()+" finish run task :"+index);
}
});
}
log("main thread before sleep!!!");
try {
Thread.sleep(4000);
} catch (InterruptedException e) {
e.printStackTrace();
}
log("before shutdown()");
pool.shutdown();
log("after shutdown(),pool.isTerminated=" + pool.isTerminated());
try {
pool.awaitTermination(1000L, TimeUnit.SECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
log("now,pool.isTerminated=" + pool.isTerminated());
}
protected static void log(String string) {
System.out.println(sdf.format(new Date())+" "+string);
}
}
A、DiscardPolicy
:
直接丢弃
2016-08-04 22:29:21 main thread before sleep!!!
2016-08-04 22:29:21 pool-1-thread-1begin run task :0
2016-08-04 22:29:22 pool-1-thread-1 finish run task :0
2016-08-04 22:29:22 pool-1-thread-1begin run task :1
2016-08-04 22:29:23 pool-1-thread-1 finish run task :1
2016-08-04 22:29:25 before shutdown()
2016-08-04 22:29:25 after shutdown(),pool.isTerminated=false
2016-08-04 22:29:25 now,pool.isTerminated=true
从结果可以看出,只有task0
和 task1
两个任务被执行了。为什么只有task0
和 task1
两个任务被执行了呢?
过程是这样的:由于我们的任务队列的容量为1.当task0
正在执行的时候,task1
被提交到了队列中但是还没有执行,受队列容量的限制,submit
提交的task2~task9
就都被直接抛弃了。因此就只有task0
和task1
被执行了。
B、DiscardOldestPolicy
:
丢弃队列中最老的任务
如果将拒绝策略改为:DiscardOldestPolicy
(丢弃队列中比较久的任务)
2016-08-04 22:31:58 pool-1-thread-1begin run task :0
2016-08-04 22:31:58 main thread before sleep!!!
2016-08-04 22:31:59 pool-1-thread-1 finish run task :0
2016-08-04 22:31:59 pool-1-thread-1begin run task :9
2016-08-04 22:32:00 pool-1-thread-1 finish run task :9
2016-08-04 22:32:02 before shutdown()
2016-08-04 22:32:02 after shutdown(),pool.isTerminated=false
2016-08-04 22:32:02 now,pool.isTerminated=true
从结果可以看出,只有task0
和task9
被执行了。
C、CallerRunsPolicy
:将任务分给调用线程来执行
没有任务被抛弃,而是将由的任务分配到main线程中执行了
如果将拒绝策略改为:CallerRunsPolicy
(即不用线程池中的线程执行,而是交给调用方来执行)
2016-08-04 22:33:07 mainbegin run task :2
2016-08-04 22:33:07 pool-1-thread-1begin run task :0
2016-08-04 22:33:08 main finish run task :2
2016-08-04 22:33:08 mainbegin run task :3
2016-08-04 22:33:08 pool-1-thread-1 finish run task :0
2016-08-04 22:33:08 pool-1-thread-1begin run task :1
2016-08-04 22:33:09 pool-1-thread-1 finish run task :1
2016-08-04 22:33:09 main finish run task :3
2016-08-04 22:33:09 mainbegin run task :5
2016-08-04 22:33:09 pool-1-thread-1begin run task :4
2016-08-04 22:33:10 main finish run task :5
2016-08-04 22:33:10 mainbegin run task :7
2016-08-04 22:33:10 pool-1-thread-1 finish run task :4
2016-08-04 22:33:10 pool-1-thread-1begin run task :6
2016-08-04 22:33:11 main finish run task :7
2016-08-04 22:33:11 mainbegin run task :9
2016-08-04 22:33:11 pool-1-thread-1 finish run task :6
2016-08-04 22:33:11 pool-1-thread-1begin run task :8
2016-08-04 22:33:12 main finish run task :9
2016-08-04 22:33:12 main thread before sleep!!!
2016-08-04 22:33:12 pool-1-thread-1 finish run task :8
2016-08-04 22:33:16 before shutdown()
2016-08-04 22:33:16 after shutdown(),pool.isTerminated=false
2016-08-04 22:33:16 now,pool.isTerminated=true
从结果可以看出,没有任务被抛弃,而是将由的任务分配到main线程中执行了。
D、AbortPolicy
:抛异常(默认)
抛出异常的方式(
AbortPolicy
)丢弃任务并抛出RejectedExecutionException
2、线程池构造器
1) 五个参数的构造函数
//五个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue)
2)六个参数的构造函数
//六个参数的构造函数-1
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory)
//六个参数的构造函数-2
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
3)七个参数的构造函数
//七个参数的构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
3、任务执行机制
1)任务调度
1、首先检测线程池运行状态,如果不是 RUNNING
,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。
2、如果 workerCount
< corePoolSize
,则创建并启动一个线程来执行新提交的任务。
3、如果 workerCount
>= corePoolSize
,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
4、如果 workerCount
>= corePoolSize
&& workerCount
< maximumPoolSiz
e,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
5、如果 workerCount
>= maximumPoolSize
,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。
2)任务缓冲
任务缓冲模块是线程池能够管理任务的核心部分。线程池的本质是对任务和线程的管理,而做到这一点最关键的思想就是将任务和线程两者解耦,不让两者直接关联,才可以做后续的分配工作。线程池中是以生产者消费者模式,通过一个阻塞队列来实现的。阻塞队列缓存任务,工作线程从阻塞队列中获取任务。
名称 | 描述 |
---|---|
ArrayBlockingQueue |
一个用数组实现的有界阻塞队列,此队列按照先进先出 ( FIFO )的原则对元素进行排序。支持公平锁和非公平锁。 |
LinkedBlockingQueue |
一个由链表结构组成的有界队列,此队列按照先进先出( FIFO ) 的原则对元素进行排序。此队列的默认长度为 Integer.MAX_VALUE ,所以默认创建的该队列有容量危险。 |
PriorityBlockingQueue |
一个支持线程优先级排序的无界队列,默认自然序进行排序,也可以自定义实现 compareTo() 方法来指定元素排序规则,不能保证同优先级元素的顺序。 |
DelayQueue |
一个实现PriorityBlockingQueue 实现延迟获取的无界队列,在创建元素时,可以指定多久才能从队列中获取当前元素。只有延时期满后才能从队列中获取元素。 |
SynchronousQueue |
一个不存储元素的阻塞队列,每一个 put 操作必须等待 take 操作,否则不能添加元素。支持公平锁和非公平锁。SynchronousQueue 的一个使用场景是在线程池里。Executors.newCachedThreadPool() 就使用了 SynchronousQueue ,这个线程池根据需要(新任务到来时)创建新的线程,如果有空闲线程则会重复使用,线程空闲了 60 秒后会被回收。 |
LinkedTransferQueue |
一个由链表结构组成的无界阻塞队列,相当于其它队列,LinkedTransferQueue 队列多了 transfer 和 tryTransfer 方法。 |
LinkedBlockingDeque |
一个由链表结构组成的双向阻塞队列。队列头部和尾部都可以添加和移除元素,多线程并发时,可以将锁的竞争最多降到一半。 |
4、线程池信息统计
方法 | 解释 | 说明 |
---|---|---|
活动线程数 | 返回当前正在执行任务的线程数量 | executor.getActiveCount() |
当前线程数 | 返回线程池中当前线程的数量,包括空闲线程和活动线程 | executor.getPoolSize() |
最大线程数 | 返回线程池允许的最大线程数量。当工作队列满时,线程池可以创建的新线程的最大数量。 | executor.getMaximumPoolSize() |
历史最大线程数 | 返回线程池在其生命周期中曾经达到的最大线程数量 | executor.getLargestPoolSize() |
线程池活跃度 | 通过活动线程数除以最大线程数计算得出,表示线程池的当前活跃程度。值越接近1,表示线程池越忙碌。 | divide(executor.getActiveCount(), executor.getMaximumPoolSize()) |
任务完成数 | 返回线程池已经成功完成的任务总数 | executor.getCompletedTaskCount() |
队列大小 | executor.getQueue().size() + executor.getQueue().remainingCapacity() | |
当前排队线程数 | 回当前等待执行的任务数量,即已经提交但尚未开始执行的任务数量。 | executor.getQueue().size() |
队列剩余大小 | 返回队列还能容纳的任务数量,即队列的剩余空间。 | executor.getQueue().remainingCapacity() |
队列使用度 | 通过当前排队线程数除以(当前排队线程数 + 队列剩余大小)计算得出,表示队列的使用程度 | divide(executor.getQueue().size(), executor.getQueue().size() + executor.getQueue().remainingCapacity()) |
5、线程池几种状态
运行状态 | 状态描述 |
---|---|
RUNNING |
能接受新提交的任务,并且也能处理阻塞队列中的任务。 |
SHUTDOWN |
关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务。 |
STOP |
不能接受新任务,也不处理队列中的任务,会中断正在处理任务的线程。 |
TERMINATED |
在 terminated() 方法执行完后进入该状态 |
TIDYING |
所有的任务都已终止了,workerCount (有效线程数) 为 0 |
6、线程池任务执行的过程和作用
1、线程数量未达到corePoolSize
,则新建一个线程(核心线程)执行任务
2、线程数量达到了corePoolSize
,则将任务移入队列等待
3、队列已满,新建线程(非核心线程)执行任务
4、队列已满,总线程数又达到了maximumPoolSize
,就会由(RejectedExecutionHandler
)抛出异常
1)好处
1、降低资源消耗:通过池化技术重复利用已创建的线程,降低线程创建和销毁造成的损耗。
2、提高响应速度:任务到达时,无需等待线程创建即可立即执行。
3、提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。
4、提供更多更强大的功能:线程池具备可拓展性,允许开发人员向其中增加更多的功能。比如延时定时线程池ScheduledThreadPoolExecutor
,就允许任务延期执行或定期执行。
2)风险
虽然线程池是构建多线程应用程序的强大机制,但使用它并不是没有风险的。用线程池构建的应用程序容易遭受任何其它多线程应用程序容易遭受的所有并发风险,诸如同步错误和死锁,它还容易遭受特定于线程池的少数其它风险,诸如与池有关的死锁、资源不足和线程泄漏。
7、方法介绍
1)ExecutorService
中execute()
和submit()
方法的区别
1、方法
execute()
没有返回值,而submit()
方法可以有返回值(通过Callable和Future接口)2、方法
execute()
提交的未执行的任务可以通过remove(Runnable)
方法删除,而submit()
提交的任务即使还未执行也不能通过remove(Runnable)
方法删除3、方法
execute()
在默认情况下异常直接抛出(即打印堆栈信息),不能捕获,但是可以通过自定义ThreadFactory
的方式进行捕获(通过setUncaughtExceptionHandler
方法设置),而submit()
方法在默认的情况下可以捕获异常
2)几种常见的线程池
a、newFixedThreadPool
:创建固定的线程池
创建一个固定数目的、可重用的线程池。可控制现场最大并发数,超出的线程会在线程队列中等待
newFixedThreadPool
创建的线程池corePoolSize
和maximumPoolSize
值是相等的,它使用的LinkedBlockingQueue;
public class FixedThreadPoolTest {
@Test
public void newFixedThreadPoolTest() throws InterruptedException {
// 固定线程的数量4
ExecutorService m = Executors.newFixedThreadPool(4);
for (int i = 1; i <= 10; i++) {
final int count = i;
m.submit(new Runnable() {
@Override
public void run() {
System.out.println("线程:" + Thread.currentThread() +
"负责了" + count + "任务");
}
});
Thread.sleep(1000);
}
}
}
控制台,会发现只有4个线程被创建了
b、newCachedThreadPool
:创建可缓存线程池
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。就是一次添加多个任务,长度会变大,会一直新建线程,当没有任务时,空闲线程会被回收,线程池为无限大,当执行第二个任务时第一个任务已经完成。会复用第一个任务的线程,而不是每次新建线程。
**参数情况 **
corePoolSize
设置为 0
,maximumPoolSize
为 Integer.MAX_VALUE
SynchronousQueue
:不存储元素的阻塞队列 ,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态
public class NewCachedThreadPooltest {
@Test
public void testRunnalbeSubmit(){
ExecutorService exec=Executors.newCachedThreadPool();
for(int i=0;i<10;i++) {
exec.submit(new MyRunnable());
}
}
class MyRunnable implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
}
控制台执行结果,会发现虽然上面开启了10个线程,但是线程其实是有重复使用的,这样就大大节省了资源
c、newSingleThreadExecutor
:创建一个单线程化的线程池
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
newSingleThreadExecutor
将corePoolSize
和maximumPoolSize
都设置为1,队列为LinkedBlockingQueue
;
d、ScheduledThreadPool
延迟线程池
允许的创建线程数量为
Integer.MAX_VALUE
3)中断判断
a、isShutDown()
isShutDown()
当调用 shutdown()
或shutdownNow()
方法后返回为true
。
如果线程池任务正常完成,为 false
(表示没有中断哦)
b、isTerminated()
isTerminated()
当调用shutdown()
方法后,并且所有提交的任务完成后返回为true
;
isTerminated()
当调用shutdownNow()
方法后,成功停止后返回为true
;
如果线程池任务正常完成,为 false
(表示没有中断哦)
threadPoolUtils.getThreadPoolExecutor().shutdown();
while(true){
if(threadPoolUtils.getThreadPoolExecutor().isTerminated()){
System.out.println("所有的子线程都结束了!");
break;
}
Thread.sleep(10000); //防止while判断过快,浪费资源,这里我设置为10秒大家看情况设置
}
4)shutdown()
、shutdownNow()
、``awaitTerminate(long timeout,TimeUnit unit)`
a、shutdown()
阻止新来的任务提交,对已经提交了的任务不会产生任何影响。当已经提交的任务执行完后,它会将那些闲置的线程进行中断,这个过程是异步的。
问:如何阻止新来的任务提交
答:通过将线程池的状态改成 SHUTDOWN
,当再将执行 execute
提交任务时,如果测试到状态不为 RUNNING
,则抛出rejectedExecution
,从而达到阻止新任务提交的目的。
问:为何对提交的任务不产生任何影响
答:在调用中断任务的方法时,它会检测 workers
中的任务,如果 worker
对应的任务没有中断,并且是空闲线程,它才会去中断。 另外的话,`workQueue` 中的值,还是按照一定的逻辑顺序不断的往 `works` 中进行输送的,这样一来,就可以保证提交的任务按照线程本身的逻辑执行,不受到影响。
b、shutdownNow()
阻止新来的任务提交,同时会中断当前正在运行的线程,即
workers
中的线程。 另外它还将 `workQueue`中的任务给移除,并将这些任务添加到列表中进行返回。
问:如何阻止新来的任务提交
答:通过将线程池的状态改成 STOP
,当再将执行 execute
提交任务时,如果测试到状态不为RUNNING
,则抛出rejectedExecution
,从而达到阻止新任务提交的目的.(如果为 `RUNNING`,这个线程没有抛出异常类型的阻塞,则继续阻塞,阻塞请看下个问题)
问:如果我提交的任务代码块中,正在等待某个资源,而这个资源没到,但此时执行shutdownNow()
,会出现什么情况
答:当执行shutdownNow()
方法时,如遇已经激活的任务,并且处于阻塞状态时,shutdownNow()
会执行1次中断阻塞的操作,此时对应的线程报InterruptedException
,如果后续还要等待某个资源,则按正常逻辑等待某个资源的到达。
例如,一个线程正在sleep()
中,此时执行shutdownNow()
,它向该线程发起interrupt()
请求,而sleep()
方法遇到有interrupt()
请求时,会抛出InterruptedException()
,并继续往下执行。在这里要提醒注意的是,在激活的任务中,如果有多个 sleep()
,该方法只会中断第一个sleep()
,而后面的仍然按照正常的执行逻辑进行。
c、awaitTermination(long timeout,TimeUnit unit)
awaitTermination
会一直等待,直到线程池状态为TERMINATED
(中断)或者 等待的时间到达了指定的时间。
exec.shutdown();
exec.awaitTermination(1, TimeUnit.HOURS);
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(3);
int i = 0;
AtomicInteger result = new AtomicInteger(0);
while (i < 10) {
i++;
executor.execute(() -> {
System.out.println(result.addAndGet(1));
});
}
System.out.println("调用shutdown()方法时,result的值为:" + result.get());
executor.shutdown();
try {
//等待所有任务结束,最多等待30分钟
executor.awaitTermination(30, TimeUnit.MINUTES);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
5)submit()
:获取返回值
a、sumbit()
1、submit
中可以放三个参数
Future<?> submit(Runnable runnable);
<T> Future<T> submit(Callable<T> callable);
<T> Future<T> submit(Runnable var1, T result);
b、分析下 Runable
和Callable
的不同
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
这个时候回发现 newTaskFor
参数不同,返回的都是一个FtureTask
对象
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
看到了下面,其实就大致可以知道,Runnable
会在这里转化成 Callable
。我们来看下 Executors.callable()
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
public FutureTask(Callable<V> callable) {
if (callable == null)throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
submit()
返回的是一个 RunnableFuture
类对象,真正是通过newTaskFor()
方法返回一个new FutureTask()
对象。所以submit()
返回的真正的对象是FutureTask
对象。
public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}
public class FutureTask<V> implements RunnableFuture<V> {
...
}
b、get方法
V get(long timeOut, TimeUnit unit)
:获取结果,超时抛出异常
//Runable接口的对象,这样当调用get方法的时候,如果线程执行成功会直接返回null,如果线程执行异常会抛出异常
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
//Callable接口的对象,当主线程调用Future的get方法的时候会获取到从线程中返回的结果数据,如果线程执行异常会抛出异常信息
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
1、 Callable
package com.hlj.threadpool.D02SubmitFuture;
import java.util.concurrent.*;
/**
* 作者 :HealerJean
* 日期 :2019/3/13 下午1:34.
* 类描述:
*/
public class D02Future {
private static final String SUCCESS = "success";
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(3);
System.out.println("线程开始执行");
Future<String> future = executorService.submit
(new D02Future().new TaskCallable());
try {
String s = future.get();
if (SUCCESS.equals(s)) {
System.out.println("线程执行结束");
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
class TaskCallable implements Callable<String> {
@Override
public String call() throws Exception {
Thread.sleep(5000);
// int i = 1/0 ; 测试有无异常的发生
System.out.println("submit方法执行任务完成" + " thread name: " +
Thread.currentThread().getName());
return SUCCESS;
}
}
}
1、如果没有 int i = 1/0 ;
线程开始执行
submit方法执行任务完成 thread name: pool-1-thread-1
线程执行结束
------------------------
2、如果有 int i = 1/0 ;
线程开始执行
java.util.concurrent.ExecutionException: java.lang.ArithmeticException: / by zero
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:192)
at com.hlj.threadpool.D02SubmitFuture.D02Future.main(D02Future.java:23)
Caused by: java.lang.ArithmeticException: / by zero
at com.hlj.threadpool.D02SubmitFuture.D02Future$TaskCallable.call(D02Future.java:42)
at com.hlj.threadpool.D02SubmitFuture.D02Future$TaskCallable.call(D02Future.java:36)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2、Runnable
package com.hlj.threadpool.d01Submit;
import java.util.concurrent.*;
/**
* 作者 :HealerJean
* 日期 :2019/3/13 上午11:43.
* 类描述:
*/
public class CallableSubmit {
private static final String SUCCESS = "success";
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(3);
System.out.println("------------------任务开始执行---------------------");
Future<String> future = executorService.submit(new Callable<String>() {
@Override
public String call() throws Exception {
Thread.sleep(5000);
System.out.println("submit方法执行任务完成" + " thread name: " + Thread.currentThread().getName());
return SUCCESS;
}
});
try {
String s = future.get();
if (SUCCESS.equals(s)) {
String name = Thread.currentThread().getName();
System.out.println("经过返回值比较,submit方法执行任务成功 thread name: " + name);
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println("-------------------main thread end---------------------");
}
}
6)isDone
: 执行结束(完成/取消/异常)返回true
package com.hlj.threadpool.d01Submit.D02SubmitFuture;
import java.util.concurrent.*;
public class D01FutureCancle {
private static final String SUCCESS = "success";
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(3);
System.out.println("线程开始执行");
Future<String> future = executorService.submit(
new D01FutureCancle().new TaskCallable());
try {
System.out.println("future.isDone()="+future.isDone());
String s = future.get();
if (SUCCESS.equals(s)) {
System.out.println("future.isDone()"+future.isDone());
System.out.println("线程执行结束");
}
} catch (InterruptedException e) {
System.out.println("InterruptedException future.isDone()="+future.isDone());
e.printStackTrace();
} catch (ExecutionException e) {
System.out.println("ExecutionException future.isDone()="+future.isDone());
e.printStackTrace();
}
}
class TaskCallable implements Callable<String> {
@Override
public String call() throws Exception {
Thread.sleep(5000);
int i = 1/0 ;
System.out.println("submit方法执行任务完成" + " thread name: " + Thread.currentThread().getName());
return SUCCESS;
}
}
}
线程开始执行
future.isDone()=false
ExecutionException future.isDone()=true
java.util.concurrent.ExecutionException: java.lang.ArithmeticException: / by zero
at java.util.concurrent.FutureTask.report(FutureTask.java:122)
at java.util.concurrent.FutureTask.get(FutureTask.java:192)
at com.hlj.threadpool.d01Submit.D02SubmitFuture.D01FutureCancle.main(D01FutureCancle.java:24)
Caused by: java.lang.ArithmeticException: / by zero
at com.hlj.threadpool.d01Submit.D02SubmitFuture.D01FutureCancle$TaskCallable.call(D01FutureCancle.java:46)
at com.hlj.threadpool.d01Submit.D02SubmitFuture.D01FutureCancle$TaskCallable.call(D01FutureCancle.java:40)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
7)cancel(boolean mayInterruptRunning)
:取消任务
未开始或已完成返回false,参数表示是否中断执行中的线程
true
:会中断正在运行的任务(相当于停止)
false
:会让线程正常执行至完成,取消的是还没有开始执行的任务,如果任务以及开始,则由它执行下去
⬤ 等待状态的任务。此时调用cancel()方法不管传入true还是false都会标记为取消,任务依然保存在任务队列中,但当轮到此任务运行时会直接跳过。
⬤ 运行中的任务。此时传入true会中断正在执行的任务,传入false则不会中断。
⬤ 完成状态。此时cancel()不会起任何作用,因为任务已经完成了。
二、知识点详解
1、优雅的关闭线程池
一般来说,线程执行完毕会自动结束,无需手动关闭
线程提供给了一个·
Stop
方法,可以即使终止一个线程,但是会发现stop已经被弃用了。Thread.stop()方法在结束线程的时候,会直接终止线程,这个线程就会立即释放掉所有的锁,而这些锁恰恰是用来维护对象的一致性的,如果此时写到了一半,强行中止,那么对象就会被破坏,或者线程可能在操作数据库,强⾏中断导致数据不一致,从而混乱的问题。所以现在不使用了
1)线程的interrupt
1、中断异常的抛出:如果此线程处于阻塞状态(比如调⽤了
wait
方法,io
等待),则会立刻退出阻塞,并抛出InterruptedException
异常,线程就可以通过捕获InterruptedException
来做⼀定的处理,然后让线程退出。
2、中断标记状态的判断: 如果此线程正处于运行之中,则线程不受任何影响,继续运行,仅仅是线程的中断标记被设置为
true
。所以线程要在适当的位置通过调用isInterrupted
方法来查看自⼰是否被中断,并做退出操作。
2)线程池的关闭
一定要记得,
shutdownNow
和shuwdown
调用完,线程池并不是立马就关闭了,要想等待线程池关闭,还需调用awaitTermination
方法来阻塞等待。
a、shuwdown()
关闭
当我们使用 shuwdown
方法关闭线程池时,一定要确保任务里不会有永久阻塞等待的逻辑,否则线程池就关闭不了。
b、shuwdownnow()
关闭
所以当我们使用 shutdownNow
方法关闭线程池时,一定要对任务里进行异常捕获(相当于线程中断)。或者线程中断的判断(当然如果上面出现了非抛出异常类型的阻塞,也会一直阻塞下去)
2、判断任务是否完成
1)倒计时器
public class CountDownLatchDemo implements Runnable {
//计数数量为10,表示需要有10个线程完成任务等待在CountDownLatch 上的线程才能执行
static final CountDownLatch end = new CountDownLatch(10);
static final CountDownLatchDemo demo = new CountDownLatchDemo();
@Override
public void run() {
try {
System.out.println(Thread.currentThread().getName());
Thread.sleep(new Random().nextInt(3) * 1000);
System.out.println("check complete");
end.countDown(); //通知CountDownLatch 一个线程已经完成了任务 倒计时可以减一了
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static void main(String args[]) throws InterruptedException {
ExecutorService executorService = Executors.newFixedThreadPool(10); //固定开启10个线程
for (int i = 0; i < 10; i++) {
executorService.submit(demo);
}
//等待检查
end.await(); //要求主线程等待所有的10个检查任务全部完成,主线程才能继续运行
//发射火箭
System.out.println("Fire!");
executorService.shutdown();
}
}
2)使用 submit
提交任务,获取返回值判断线程池任务结束
long startTime = System.currentTimeMillis();
private void doOnceTasks(){
List<Future> futureList = Lists.newArrayListWithCapacity(15);
for(int i = 0; i < 15; ++i){
Future future = executor.submit(()->{
// 随机睡 0-5 秒
int sec = new Double(Math.random() * 5).intValue();
LockSupport.parkNanos(sec * 1000 * 1000 * 1000);
System.out.println(Thread.currentThread().getName() + " end");
});
futureList.add(future);
}
// 等待所有任务执行结束
for(Future future : futureList){
try {
future.get();
} catch (Exception e) {
e.printStackTrace();
}
}
}
long totalTime = (System.currentTimeMillis() - startTime) / NumberConstant.ONE_THOUSAND;
3、线程池核心线程空闲会占用性能吗
线程池核心线程在空闲时确实可能会占用一定的系统性能,但这种占用通常是有限的,并且可以通过合理的配置来优化。以下是对这一问题的详细分析:
⬤ 空闲线程的状态:当线程池中的核心线程处于空闲状态时,它们并不会像运行中的线程那样占用大量的 CPU
资源。实际上,这些空闲线程通常会处于等待(Waiting
)或阻塞(Blocked
)状态,等待新的任务到来。在这种状态下,线程的 CPU
占用率非常低,因为它们并没有在执行实际的计算任务。
⬤ 内存占用:虽然空闲线程在 CPU
方面的占用较低,但它们仍然会占用一定的内存资源。每个线程都需要一定的堆栈空间来存储其执行环境,包括局部变量、调用栈等。因此,如果线程池中的核心线程数量过多,即使它们大部分时间都处于空闲状态,也会占用大量的内存资源。这可能会给垃圾回收器带来额外的压力,并可能影响系统的整体性能。
⬤ 上下文切换:虽然空闲线程本身不进行实际的计算任务,但系统仍然需要维护它们的上下文信息。当系统中有大量线程时,即使它们大多处于空闲状态,上下文切换的开销也会增加。这可能会降低系统的整体响应速度和吞吐量
⬤ 资源竞争:虽然空闲线程不直接参与资源竞争,但它们的存在可能会间接影响其他正在运行的线程。例如,如果系统资源(如CPU
、内存、I/O
设备等)有限,空闲线程可能会占用一部分资源,从而减少可用于其他任务的资源量。
4、多线程并发场景有哪些坑
1)“不正确的创建”线程池
常规来说,线程资源必须通过线程池提供,不允许在应用中自行显式创建线程, ` JAVA ` 代码规范也明确表示 “线程资源必须通过线程池提供,不允许在应用中自行显式创建线程”,但是创建线程池的方式也有很多种,不能滥用。
常见创建线程池方式如:通过 ` JDK
提供的
ThreadPoolExecutor、
ScheduledThreadPoolExecutor以及 JDK 7 开始引入的
ForkJoinPool创建,还有更方便的
Executors类以及
spring提供的
ThreadPoolTaskExecutor` 等。其关系如下图:
1、FixedThreadPool
和 SingleThreadPool
允许的请求任务队列长度为Integer.MAX_VALUE
,可能会堆积大量的请求,从而导致 OOM
。
2、CachedThreadPool
和 ScheduledThreadPool
允许的创建线程数量为 Integer.MAX_VALUE
,可能会创建大量的线程,从而导致 OOM
。
2)线程池“参数设置不合理”
参数 | 含义 | 描述 |
---|---|---|
corePoolSize | 核心线程数 | 线程池中要保留的线程数,即使它们处于空闲状态,除非设置了 allowCoreThreadTimeOut |
maximumPoolSize | 最大线程数 | 线程池中允许的最大线程数 |
keepAliveTime | 保持存活时间 | 当线程数大于核心时,这是多余的空闲线程在终止前等待新任务的最长时间 |
unit | 时间单位 | keepAliveTime 参数的时间单位 |
workQueue | 任务队列 | 用于在执行任务之前保存任务的队列。此队列将仅保存 execute方 法提交的 Runnable 任务 |
threadFactory | 线程工厂 | 执行器创建新线程时要使用的工厂 |
handler | 拒绝策略 | 当由于达到最大线程数和队列容量而导致执行受阻时使用的处理程序 |
注意在设置任务队列时,需要考虑有界和无界队列,使用有界队列时,注意线程池满了后,被拒绝的任务如何处理。使用无界队列时,需要注意如果任务的提交速度大于线程池的处理速度,可能会导致内存溢出。
对于拒绝策略,首先要明确的一点是“拒绝策略的执行线程是提交任务的线程,而不是子线程”。JDK 的 ThreadPoolExecutor
提供了 4 种拒绝策略:
内部类 | 调用者运行策略 | 描述 |
---|---|---|
AbortPolicy | 中止策略 | 当触发拒绝策略时,直接抛出拒绝执行的 RejectedExecutionException 异常,中止策略的意思也就是打断当前执行流程。 |
CallerRunsPolicy | 调用者运行策略 | 当触发拒绝策略时,只要线程池没有关闭,就由提交任务的当前线程处理。 |
DiscardOldestPolicy | 弃老策略 | 如果线程池未关闭,就弹出队列头部的元素,然后尝试执行。 |
DiscardPolicy | 丢弃策略 | 直接静悄悄的丢弃这个任务,不触发任何动作。 |
对于自定义拒绝策略,不同场景应选择相应的拒绝策略,抛开应用场景讲技术会显得苍白,大家可以参考常见技术框架的处理方式:
常见场景 | 描述 |
---|---|
Dubbo | Dubbo 中的线程拒绝策略 AbortPolicyWithReport,输出当前线程堆栈详情等。 |
JSF | JSF 的 BusinessPool 中 RejectedExecutionHandler 设置钩子函数,允许业务系统去扩展实现。 |
Netty | Netty 中的线程池拒绝策略 NewThreadRunsPolicy,创建一个新的线程去执行。 |
ActiveMq | ActiveMq 中的线程池拒绝策略,通过队列的带有超时时间的 offer 方法,比如:executor.getQueue().offer(r, 60, TimeUnit.SECONDS); 要注意拒绝策略的执行线程是主线程,offer 函数也是会阻塞线程的,要慎用。 |
3)局部线程池“使用后不销毁回收”
线程会消耗宝贵的系统资源,比如内存等,所以是很不推荐使用局部线程池(未预先创建的线程池,用完就可以销毁,下次用时还会创建)的;但是如果某些特殊场景确实使用了局部线程池,那么应该在用完后,主动销毁。主动销毁线程池主要有两种方式:
方法 | 描述 |
---|---|
shutdown |
“温柔”的关闭线程池。不接受新任务,但是在关闭前会将之前提交的任务处理完毕。 |
shutdownNow |
“粗暴”的关闭线程池,也就是直接关闭线程池,通过 Thread#interrupt() 方法终止所有线程,不会等待之前提交的任务执行完毕。但是会返回队列中未处理的任务。 |
为了更深入的理解两个问题:
⬤ 问题1:到底是否所有局部创建的线程池都需要主动销毁?
⬤ 问题2:为什么 Dubbo
中的线程拒绝策略 AbortPolicyWithReport
使用了 Executors.newSingleThreadExecutor()
,并且没有主动销毁动作?
我们需要从 GC
角度进行分析。要知道对象什么时候死亡,我们需要先知道 ` JVM 的
GC 是如何判断对象是可以回收的。
JAVA 是通过可达性算法来来判断对象是否存活的。这个算法的基本思路就是通过一系列的称为“
GC
Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链,当一个对象到
GC
Roots` 没有任何引用链相连时,则证明此对象是不可用的。
对于线程池而言,在 ThreadPoolExecutor
类中具有非静态内部类 Worker
,用于表示当前线程池中的线程,**因为非静态内部类对象具有外部包装类对象的引用,所以当存在线程 ` Worker 对象时**,线程池不会被
GC 回收。也就是说,**线程池没有引用,且线程池内没有存活线程时,才是可以被
GC 回收的**。应注意的是线程池的核心线程默认是一直存活的,除非核心线程数为
0 或者设置了
allowCoreThreadTimeOut` 允许核心消除空闲时销毁。
线程池类型 | CachedThreadPool |
FixedThreadPool |
SingleThreadExecutor |
---|---|---|---|
核心线程数 | 0 |
nThreads (用户设定) |
1 |
最大线程数 | Integer.MAX_VALUE |
nThreads (用户设定) |
1 |
非核心线程存活时间 | 60s | 无非核心线程 | 无非核心线程 |
等待队列最大长度 | 0(这里用的是 SynchronousQueue ,一个不存储元素的神奇的阻塞队列) |
Integer.MAX_VALUE |
Integer.MAX_VALUE |
特点 | 提交任务优先复用空闲线程,没有空闲线程则创建新线程 | 固定线程数,等待运行的任务均放入等待队列 | 有且仅有一个线程在运行,等待运行任务放入等待队列,可保证任务运行顺序与提交顺序一致 |
三种类型的线程池与 GC
关系:
1、CachedThreadPool
:没有核心线程,且线程具有超时时间,可见在其引用消失后,等待任务运行结束且所有线程空闲回收后,``GC
开始回收此线程池对象;
2、FixedThreadPool
:核心线程数及最大线程数均为 n
Threads
,并且在默认 allowCoreThreadTimeOut
为 false
的情况下,其引用消失后,核心线程即使空闲也不会被回收,故 GC
不会回收该线程池;
3、SingleThreadExecutor
:在创建时实际返回的是 FinalizableDelegatedExecutorService
类的对象,该类重新了 finalize()
函数执行线程池的销毁,该对象持有 ThreadPoolExecutor
对象的引用,但 ThreadPoolExecutor
对象并不引用 FinalizableDelegatedExecutorService
对象,这使得在 FinalizableDelegatedExecutorService
对象的外部引用消失后,GC
将会对其进行回收,触发 finalize
函数,而该函数仅仅简单的调用shutdown
函数关闭线程,在所有当前的任务执行完成后,回收线程池中线程,则 GC
可回收线程池对象。
结论:CachedThreadPool
及 SingleThreadExecutor
的对象在不显式销毁时,且其对象引用消失的情况下,可以被 GC
回收;FixedThreadPool
对象在不显式销毁,且其对象引用消失的情况下不会被 GC
回收,会出现内存泄露。因此无论使用什么线程池,使用完毕后均调用 shutdown
是一个较为安全的编程习惯。
4)线程池处理“刚启动时效率低”
默认情况下,即使是核心线程也只能在新任务到达时才创建和启动。对于
ThreadPoolExecutor
线程池可以使用prestartCoreThread
(启动一个核心线程)或prestartAllCoreThreads
(启动全部核心线程)方法来提前启动核心线程。
5)“不合理的使用共享线程池”
提交异步任务,不指定线程池,存在最主要问题是非核心业务占用线程资源,可能会导致核心业务收影响。因为公共线程池的最大线程数、队列大小、拒绝策略都比较保守,可能引发各种问题,常见场景如下:
1、CompleteFuture
提交异步任务,不指定线程池。
CompleteFuture
的 supplyAsync
等以 *Async
为结尾的方法,会使用多线程异步执行。可以注意到的是,它也允许我们不携带多线程提交任务的执行线程池参数,这个时候是默认使用的 ForkJoinPool.commonPool()
。
ForkJoinPool
最适合的是计算密集型的任务,如果存在 I/O
,线程间同步,sleep()
等会造成线程长时间阻塞的情况时,最好配合使用 ManagedBlocker
。ForkJoinPool
默认线程数取决于 parallelism
参数为:CPU
处理器核数 -1,也允许通修改 Java
系统属性 “java.util.concurrent.ForkJoinPool.common.parallelism
” 进行自定义配置。
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "期望的线程数");
2、JDK
8
引入的集合框架的并行流 Parallel
Stream
。
Parallel
Stream
也是使用的 ForkJoinPool.commonPool()
,但有一点区别是:Parallel
Stream
的主线程 (提交任务的线程)是会去参与处理的;比如 8
核心的机器执行 Parallel
Stream
是有 8
个线程,而 CompleteFuture
提交的任务只有 7
个线程处理。不建议使用是一致的。
参数 | 说明 |
---|---|
核心线程数 | 默认情况下,ForkJoinPool.commonPool() 的大小是根据Runtime.getRuntime().availableProcessors() 方法返回的 CPU 核心数来决定的。其最大线程数默认为 CPU 核心数减一 |
非核心线程数 | 线程池中的线程数量(包括核心线程和非核心线程)是动态调整的,以适应并行任务的需求。然而,与 ThreadPoolExecutor 不同,ForkJoinPool 并没有明确区分核心线程和非核心线程的概念 |
最大线程数 | ForkJoinPool.commonPool() 的最大线程数默认是运行时可用处理器的数量减一 |
队列数 | 每个工作线程都有自己的任务队列,没有统一的队列数 |
3、@Async
提交异步任务,不指定线程池。
SpringBoot 2.1.9
之前版本使用 @Async
不指定 Executor
会使用 SimpleAsyncTaskExecutor
,该线程池默认来一个任务创建一个线程,若系统中不断的创建线程,最终会导致系统占用内存过高,引发 OutOfMemoryError
错误。
SpringBoot 2.1.0
之后版本引入了 TaskExecutionAutoConfiguration
,其使用 ThreadPoolTaskExecutor
作为 默认 Executor
,通过 TaskExecutionProperties.Pool
可以看到其配置默认核心线程数:8
,最大线程数:Integet.MAX_VALUE
,队列容量是:Integet.MAX_VALUE
,空闲线程保留时间:60s
,线程池拒绝策略:AbortPolicy
。
虽然可以通实现 AsyncConfigurer
接口等方式,自行配置线程池参数,但仍不建议使用公共线程池。
6)主线程“等待时间不合理”
1、应尽量避免使用 CompletableFuture.join()
,Future.get()
这类不带有超时时间的阻塞主线程操作。
2、for
循环使用 future.get(long timeout, TimeUnit unit)
。此方法允许我们去设置超时时间,但是如果主线程串行获取的话,下一个 future.get
方法的超时时间,是从第一个 get()
结束后开始计算的,所以会导致超时时间不合理。
7)提交任务“不考虑子线程超时时间”
1、主线程 Future.get
虽然超时,但是子线程依然在执行?
比如当通过 ExecutorService
提交一个 Callable
任务的时候,会返回一个 Future
对象,Future
的 get(long timeout, TimeUnit unit)
方法时,如果出现超时,则会抛出 java.util.concurrent.TimeoutException
;但是,此时 Future
实例所在的线程并没有中断执行,只是主线程不等待了,也就是当前线程的 status
依然是 NEW
值为 0
的状态,所以当大量超时,可能就会将线程池打满。
提到中断子线程,会想到 future.cancel(true)
。那么我们真的可以中断子线程吗?首先Java
无法直接其他线程的,如果非要实现此功能,也只能通过 interrupt
设置标志位,子线程执行到中间环节去查看标志位,识别到中断后做后续处理。理解一个关键点,interrupt()
方法仅仅是改变一个标志位的值而已,和线程的状态并没有必然的联系。
2、子线程的任务都应该有一个合理的超时时间。
比如子线程调用 RPC
/HTTP
接口等,一定要检查超时时间配置是否合理。
8)“不考虑请求过载”
我们设置了合理的参数,也注意优化了各种场景问题,终于可以大胆使用多线程了。也一定要考虑对下游带来的影响,比如数据库请求并发量增长,占用 JDBC
数据库连接、给依赖 RPC
服务带来性能压力等。
9)其他
1、并发执行“线程不安全”操作:多线程操作同一对象应考虑线程安全性。常见场景比如 HashMap
应该换成 ConcurrentHashMap
;StringBuilder
应该换成 StringBuffer
等。
2、“不考虑线程变量”的传递:提交到线程池执行的异步任务,切换了线程,子线程在执行时,获取不到主线程变量中存储的信息
3、并发会“增大出现死锁的可能性”:多线程不只是程序中提交到线程池执行,比如打到同一容器的 http 请求本身就是多线程,任何多线程操作都有死锁风险。使用业务线程池的并发操作需要更加注意,因为更容易暴露出来“死锁”这个问题
3、业务实战
1、业务背景
3.1.1、场景1:快速响应用户请求
描述:用户发起的实时请求,服务追求响应时间。比如说用户要查看一个商品的信息,那么我们需要将商品维度的一系列信息如商品的价格、优惠、库存、图片等等聚合起来,展示给用户。
分析:从用户体验角度看,这个结果响应的越快越好,如果一个页面半天都刷不出,用户可能就放弃查看这个商品了。而面向用户的功能聚合通常非常复杂,伴随着调用与调用之间的级联、多级级联等情况,业务开发同学往往会选择使用线程池这种简单的方式,将调用封装成任务并行的执行,缩短总体响应时间。另外,使用线程池也是有考量的,这种场景最重要的就是获取最大的响应速度去满足用户,所以应该不设置队列去缓冲并发任务,调高
corePoolSize
和maxPoolSize
去尽可能创造多的线程快速执行任务。
3.1.1、场景1:快速处理批量任务
描述:离线的大量计算任务,需要快速执行。比如说,统计某个报表,需要计算出全国各个门店中有哪些商品有某种属性,用于后续营销策略的分析,那么我们需要查询全国所有门店中的所有商品,并且记录具有某属性的商品,然后快速生成报表。
分析:这种场景需要执行大量的任务,我们也会希望任务执行的越快越好。这种情况下,也应该使用多线程策略,并行计算。 但与响应速度优先的场景区别在于,这类场景任务量巨大,并不需要瞬时的完成,而是关注如何使用有限的资源,尽可能在单位时间内处理更多的任务,也就是吞吐量优先的问题。所以应该设置队列去缓冲并发任务,调整合适的corePoolSize去设置处理任务的线程数。在这里,设置的线程数过多可能还会引发线程上下文切换频繁的问题,也会降低处理任务的速度,降低吞吐量。
2、实际问题及方案思考
3.2.1、问题1:最大核心数偏小,导致任务拒绝服务降级
事故描述:XX页面展示接口产生大量调用降级,数量级在几十到上百。
事故原因:该服务展示接口内部逻辑使用线程池做并行计算,由于没有预估好调用的流量,导致最大核心数设置偏小,大量抛出
RejectedExecutionException
,触发接口降级条件,示意图如下:
3.2.2、问题2:队列过长,任务执行时间拉长,导致超时
事故描述:XX业务提供的服务执行时间过长,作为上游服务整体超时,大量下游服务调用失败。
事故原因:该服务处理请求内部逻辑使用线程池做资源隔离,由于队列设置过长,最大线程数设置失效,导致请求数量增加时,大量任务堆积在队列中,任务执行时间过长,最终导致下游服务的大量调用超时失败。示意图如下:
3、分析线程数
一个
CPU
核心,单位时间内只能执行一个线程的指令
3.3.1、分析
那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。来写个死循环空跑的例子验证一下:
public class CPUUtilizationTest{
public static void main(String[] args){
//死循环,什么都不做
while(true){
}
}}
运行这个例子后,来看看现在CPU的利用率:从图可以看到,我的 3
号核心利用率已经被跑满了
那基于上面的理论,我多开几个线程试试呢?
public class CPUUtilizationTest{
public static void main(String[] args){
for(int j =0; j <6; j++){
new Thread(newRunnable(){
@Override
public void run(){
while(true){
}
}
}).start();
}
}}
此时再看 CPU
利用率,1/2/5/7/9/11 几个核心的利用率已经被跑满:
那如果开 12
个线程呢,是不是会把所有核心的利用率都跑满?答案一定是会的:
如果此时我把上面例子的线程数继续增加到24个线程,会出现什么结果呢?
CPU
利用率和上一步一样,还是所有核心 100%
,不过此时负载从 11.x
增加到了22.x
,说明此时 CPU
更繁忙,线程的任务无法及时执行。
**现代CPU基本都是多核心的,我们可以简单的认为是12核心CPU。那么我这个CPU就可以同时做12件事,互不打扰。 **
问题1:既然一个线程就能打满一个核心,那我见过线程数都比较多,这是怎么回事?
答案:如果要执行的线程大于核心数,那么就需要通过操作系统的调度了。操作系统给每个线程分配 CPU
时间片资源,然后不停的切换,从而实现“并行”执行的效果。
问题2:执行的线程大于核心数 这样真的就快了吗?
答案:一个线程就可以把一个核心的利用率跑满。如果每个线程都很“霸道”,不停的执行指令,不给 CPU
空闲的时间,并且同时执行的线程数大于 CPU
的核心数,就会导致操作系统更频繁的执行切换线程执行,以确保每个线程都可以得到执行。 不过切换是有代价的,每次切换会伴随着寄存器数据更新,内存页表更新等操作。虽然一次切换的代价和 I/O
操作比起来微不足道,但如果线程过多,线程切换的过于频繁,甚至在单位时间内切换的耗时已经大于程序执行的时间,就会导致 CPU
资源过多的浪费在上下文切换上,而不是在执行程序,得不偿失。
问题3:那真的会这么多死循环空跑的线程吗?
答案:大多程序在运行时都会有一些 I/O
操作,可能是读写文件,网络收发报文等,这些 I/O
操作在进行时时需要等待反馈的。比如网络读写时,需要等待报文发送或者接收到,在这个等待过程中,线程是等待状态,CPU
没有工作。此时操作系统就会调度 CPU
去执行其他线程的指令,这样就完美利用了 CPU
这段空闲期,提高了 CPU
的利用率。
问题4:如果在上面的死循环中插入一段 I/O
操作呢
1、单线程效果:唯一有利用率的9号核心,利用率也才50%,和前面没有sleep的100%相比,已经低了一半了
public class CPUUtilizationTest{
public static void main(String[] args)throws InterruptedException{
for(int n =0; n <1; n++){
new Thread(newRunnable(){
@Override
public void run(){
while(true){
//每次空循环 1亿 次后,sleep 50ms,模拟 I/O等待、切换
for(int i =0; i <100_000_000l; i++){
}
try{
Thread.sleep(50);
}
catch(InterruptedException e){
e.printStackTrace();
}
}
}
}).start();
}
}}
2、线程数调整到12(调满):单个核心的利用率60左右
3、线程数增加到18:此时单核心利用率,已经接近100%了。由此可见,当线程中有 I/O 等操作不占用CPU资源时,操作系统可以调度CPU可以同时执行更多的线程
总结:将 I/O
事件的频率调高看看呢,把循环次数减到一半,50_000_000,同样是 18
个线程,此时每个核心的利用率,大概只有 70%
左右了。
3.3.2、线程数和 CPU
利用率总结
上面的例子,只是辅助,为了更好的理解线程数/程序行为/CPU状态的关系,来简单总结一下:
⬤ 一个极端的线程(不停执行“计算”型操作时),就可以把单个核心的利用率跑满,多核心 CPU
最多只能同时执行等于核心数的“极端”线程数
⬤ 如果每个线程都这么“极端”,且同时执行的线程数超过核心数,会导致不必要的切换,造成负载过高,只会让执行更慢
⬤ I/O
等暂停类操作时,CPU
处于空闲状态,操作系统调度 CPU
执行其他线程,可以提高 CPU
利用率,同时执行更多的线程
⬤ I/O
事件的频率越高,或者等待/暂停时间越长,CPU
的空闲时间也就更长,利用率越低,操作系统可以调度 CPU
执行更多的线程
3.3.3、计算核心线程数
在《Java 并发编程实战》中介绍了一个线程数计算的公式 下面也有介绍(方案一)
如果我期望目标利用率为 90%
(多核90),那么需要的线程数为:
核心数
12
* 利用率0.9
* (1 + 50(sleep时间)/50(循环50_000_000耗时)) ≈ 22
计算:W
是等待时间比如 IO
等待的时间,C
是计算时间即我完成那么多次循环一共耗时是多少,现在把线程数调到 22
,看看结果:
结果:现在 CPU
利用率大概 80+
,和预期比较接近了,由于线程数过多,还有些上下文切换的开销,再加上测试用例不够严谨,所以实际利用率低一些也正常。
3.3.4、真实程序
那么在实际的程序中,或者说一些
Java
的业务系统中,线程数(线程池大小)规划多少合适呢?先说结论:没有固定答案,先设定预期,比如我期望的
CPU
利用率在多少,负载在多少,GC
频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数。比如一个普通的,SpringBoot
为基础的业务系统,默认Tomcat
容器+连接池+垃圾回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。此时按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,
Tomcat
有自己的线程池,JVM
也有一些线程,垃圾回收器都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU
的资源。
正确流程:
- 分析当前主机上,有没有其他进程干扰
- 分析当前
JVM
进程上,有没有其他运行中或可能运行的线程 - 设定目标
- 目标
CPU
利用率 - 我最高能容忍我的CPU
飙到多少? - 目标
GC
频率/暂停时间 - 多线程执行后,GC
频率会增高,最大能容忍到什么频率,每次暂停时间多少? - 执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕
4、如何设置参数才合理
线程池使用面临的核心的问题在于:线程池的参数并不好配置。
⬤ 一方面线程池的运行机制不是很好理解,配置合理需要强依赖开发人员的个人经验和知识;
⬤ 另一方面,线程池执行的情况和任务类型相关性较大,
IO
密集型和CPU
密集型的任务运行起来的情况差异非常大,这导致业界并没有一些成熟的经验策略帮助开发人员参考。这导致业界并没有一些成熟的经验策略帮助开发人员参考,下面罗列了几个业界线程池参数配置方案:
3.4.1、设置规则
第一阶段,单
CPU
时代,单CPU
在同一时间点,只能执行单一线程。比如,的某一刻 00:00:00 这一秒,只计算1+1=2(假设cpu每秒计算一次)第二阶段,单
CPU
多任务阶段,计算机在同一时间点,并行执行多个线程。但这并非真正意义上的同时执行,而是多个任务共享一个CPU
,操作系统协调CPU
在某个时间点,执行某个线程,因为CPU
在线程之间切换比较快,给人的感觉,就好像多个任务在同时运行。比如,电脑开了两个程序CPU
切换的频率是一秒一次,假设当前cpu
计算速度是1秒1次,那么我们就能明显感到卡顿,当聊天,点击发送按钮时候,qq音乐就会停止运行。当前cpu计算速度是1秒100
次,也就是它能在一秒之内在这两个进程见切换100次,那么我们就感不到卡顿,觉得QQ和QQ音乐是同时在运行。第三阶段,多
CPU
多任务阶段,真正实现的,在同一时间点运行多个线程。具体到哪个线程在哪个CPU
执行,这就跟操作系统和CPU
本身的设计有关了。
3.4.1.1、设计原则
1、系统的资源状况(处理器的数目,内存容量,
CPU
使用率上限)2、线程所执行任务的特性(
cpu
密集型,i/o
密集型)3、设计线程数要尽可能考虑其他所有进程内部线程数设置的情况。
CPU
密集型线程:如果是 CPU
密集型任务,就需要尽量压榨 CPU
,考虑到这类线程执行任务时消耗主要是处理器资源,我们可以将这类线程数设置为Ncpu,有时候,因为CPU
密集型线程也可能由于某些原因被切出,为了避免处理器资源浪费,可以为它添加一个额外的线程Ncpu+1
I/O
密集型线程:考虑到I/O
操作可能导致上下文切换,为这样的线程设置过多的线程数会导致额外的系统开销,在 I/O
密集型线程在等待I/O操作返回结果的时候不占用处理器资源。因此我们可以为每个处理器安排一个额外的线程来提高处理器资源的利用率。所以设置为Ncpu*2
public class NumMain {
public static void main(String[] args) {
System.out.println(Runtime.getRuntime().availableProcessors());
}
}
3.4.1.2、验证 cup
密集型 Ncpu+1 是否可行
import java.util.List;
public class CPUTypeTest implements Runnable {
// 整体执行时间,包括在队列中等待的时间
List<Long> wholeTimeList;
// 真正执行时间
List<Long> runTimeList;
private long initStartTime = 0;
/**
* 构造函数
* @param runTimeList
* @param wholeTimeList
*/
public CPUTypeTest(List<Long> runTimeList, List<Long> wholeTimeList) {
initStartTime = System.currentTimeMillis();
this.runTimeList = runTimeList;
this.wholeTimeList = wholeTimeList;
}
/**
* 判断素数
* @param number
* @return
*/
public boolean isPrime(final int number) {
if (number <= 1)
return false;
for (int i = 2; i <= Math.sqrt(number); i++) {
if (number % i == 0)
return false;
}
return true;
}
/**
* 計算素数
* @return
*/
public int countPrimes(final int lower, final int upper) {
int total = 0;
for (int i = lower; i <= upper; i++) {
if (isPrime(i))
total++;
}
return total;
}
public void run() {
long start = System.currentTimeMillis();
countPrimes(1, 1000000);
long end = System.currentTimeMillis();
long wholeTime = end - initStartTime;
long runTime = end - start;
wholeTimeList.add(wholeTime);
runTimeList.add(runTime);
System.out.println(" 单个线程花费时间:" + (end - start));
}
}
分析:
测试代码在
4
核intel i5 CPU
机器上的运行时间变化如下:
总结:
1、当线程数量太小,同一时间大量请求将被阻塞在线程队列中排队等待执行线程,此时
CPU
没有得到充分利用;2、当线程数量太大,被创建的执行线程同时在争取
CPU
资源,又会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。3、通过测试可知,4~6 个线程数是最合适的。
3.4.1.3、验证 i/o
密集型任务
这种任务应用起来,系统会用大部分的时间来处理
I/O
交互,而线程在处理I/O
的时间段内不会占用CPU
来处理,这时就可以将CPU
交出给其它线程使用。因此在I/O
密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是2N
。
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.Vector;
/**
* @author zhangyujin
* @date 2021/7/30 2:22 下午.
* @description
*/
public class IOTypeTest implements Runnable {
// 整体执行时间,包括在队列中等待的时间
Vector<Long> wholeTimeList;
// 真正执行时间
Vector<Long> runTimeList;
private long initStartTime = 0;
/**
* 构造函数
*
* @param runTimeList
* @param wholeTimeList
*/
public IOTypeTest(Vector<Long> runTimeList, Vector<Long> wholeTimeList) {
initStartTime = System.currentTimeMillis();
this.runTimeList = runTimeList;
this.wholeTimeList = wholeTimeList;
}
/**
* IO 操作
*
* @return
* @throws IOException
*/
public void readAndWrite() throws IOException {
File sourceFile = new File("D:/test.txt");
// 创建输入流
BufferedReader input = new BufferedReader(new FileReader(sourceFile));
// 读取源文件, 写入到新的文件
String line = null;
while ((line = input.readLine()) != null) {
//System.out.println(line);
}
// 关闭输入输出流
input.close();
}
public void run() {
long start = System.currentTimeMillis();
try {
readAndWrite();
} catch (IOException e) {
}
long end = System.currentTimeMillis();
long wholeTime = end - initStartTime;
long runTime = end - start;
wholeTimeList.add(wholeTime);
runTimeList.add(runTime);
System.out.println(" 单个线程花费时间:" + (end - start));
}
}
分析:
总结:当线程数量在 8 时,线程平均执行时间是最佳的,这个线程数量和我们的计算公式所得的结果就差不多。
3.4.3.4、非极端如何配置
看完以上两种情况下的线程计算方法,你可能还想说,在平常的应用场景中,我们常常遇不到这两种极端情况,那么碰上一些常规的业务操作
比如,通过一个线程池实现向用户定时推送消息的业务,我们又该如何设置线程池的数量呢?此时我们可以参考以下公式来计算线程数:
根据自己的业务场景,从“N+1”和“2N”两个公式中选出一个适合的,计算出一个大概的线程数量,之后通过实际压测,逐渐往“增大线程数量”和“减小线程数量”这两个方向调整,然后观察整体的处理时间变化,最终确定一个具体的线程数量。
3.4.2、方案收集
3.4.2.1、方案1
⬤ cup 的个数(Ncpu)= 当前机器的cpu核数(number of CPUs)
⬤ cup 的利用率 (Rcpu) = 目标cpu的利用率(0 <= 利用率 <= 1 )
⬤ cpu 的等待时间和计算时间百分比 ( W / C ) = cpu 的等待时间 / cpu的计算时间
⬤ 保持处理器的理想利用率的最佳池大小是 Nthreads=Ncpu * Rcpu * (1+W/C)
出自《Java并发编程实践》该方案偏理论化。
问题:首先,线程计算的时间和等待的时间要如何确定呢?这个在实际开发中很难得到确切的值。另外计算出来的线程个数逼近线程实体的个数,Java
线程池可以利用线程切换的方式最大程度利用CPU核数,这样计算出来的结果是非常偏离业务场景的
任务类型:CPU
密集型任务,则线程数 = Ncpu
+1
任务类型:I/O
密集型任务,则线程数 = (W/C
+1) * Ncpu
一般认为是 2 * Ncpu
3.4.2.2、方案2
⬤ 核心线程数 = 2 * cpu
的个数
⬤ 最大线程数 = 25 * cpu
的个数
问题:没有考虑应用中往往使用多个线程池的情况,统一的配置明显不符合多样的业务场景。
3.4.2.3、方案3
⬤ 核心线程数=Tps * time
⬤ 最大线程数 = Tps * time *(1.7-2)
问题:这种计算方式,考虑到了业务场景,但是该模型是在假定流量平均分布得出的。业务场景的流量往往是随机的,这样不符合真实情况。
3.4.3、动态化线程池
3.4.3.1、新流程图
调研了以上业界方案后,我们并没有得出通用的线程池计算方式,这样就导致了下面两个问题:
1、程序开发期难以敲定合适的线程池参数配置;
2、程序运行期难以更改线程池参数,需要重新修改程序再重新上线,投入成本巨大;
3.4.3.2、使用场景参数配置
线程池构造参数有8个,但是最核心的是3个:
corePoolSize
、maximumPoolSize
,workQueue
,它们最大程度地决定了线程池的任务分配和线程分配策略。考虑到在实际应用中我们获取并发性的场景主要是两种1、并行执行子任务,提高响应速度。这种情况下,应该使用同步队列,没有什么任务应该被缓存下来,而是应该立即执行。
2、并行执行大批次任务,提升吞吐量。这种情况下,应该使用有界队列,使用队列去缓冲大批量的任务,队列容量必须声明,防止任务无限制堆积。所以线程池只需要提供这三个关键参数的配置,并且提供两种队列的选择,就可以满足绝大多数的业务需求,
Less
is
More
。
3.3.1.3、功能架构
动态调参:支持线程池参数动态调整、界面化操作;包括修改线程池核心大小、最大核心大小、队列长度等;参数修改后及时生效。
任务监控:支持应用粒度、线程池粒度、任务粒度监控;可以看到线程池的任务执行情况、最大任务执行时间、平均任务执行时间、95
/99
线等。
⬤ 事前,线程池定义了“活跃度”这个概念,来让用户在发生 Reject
异常之前能够感知线程池负载问题,线程池活跃度计算公式为:线程池活跃度 = activeCount
/ maximumPoolSize
。这个公式代表当活跃线程数趋向于maximumPoolSize
的时候,代表线程负载趋高。
⬤ 事中,也可以从两方面来看线程池的过载判定条件,一个是发生了 Reject
异常,一个是队列中有等待任务(支持定制阈值)。以上两种情况发生了都会触发告警,告警信息会推送给服务所关联的负责人。
负载告警:线程池队列任务积压到一定值的时候告知应用开发负责人;当线程池负载数达到一定阈值的时候会告知应用开发负责人。
操作监控:创建/修改和删除线程池都会通知到应用的开发负责人。
操作日志:可以查看线程池参数的修改记录,谁在什么时候修改了线程池参数、修改前的参数值是什么。
权限校验:只有应用开发负责人才能够修改应用的线程池参数。
3.4.4、利特尔法则合理配置参数值
我们认为线程池是由队列连接的一个或多个服务提供程序,这样我们也可以通过利特尔法则来定义线程池大小。我们只需计算请求到达率和请求处理的平均时间。然后,将上述值放到利特尔法则(Little’s law)就可以算出系统平均请求数。
⬤ 若请求数小于我们线程池的大小,就相应地减小线程池的大小。
⬤ 与之相反,如果请求数大于线程池大小,事情就有点复杂了,因为不可能无限放大线程池线程数,也不能无限放大线程池队列数,太大了,服务会崩溃掉。所以最好的办法就是通过压力测试来合理的设置线程池大小。
实际业务场景参数:
⬤ tasks
: 每秒的任务数,假设是 500
~1000
⬤ taskcost
: 每个任务花费的时间,假设为 0.1s
⬤ responsetime
: 系统允许容忍的最大响应时间,假设为 1s
结合利特尔法则做几个计算:
1、corePoolSize
= 每秒需要多少个线程处理?
⬤ threadcount
= tasks
/ ( 1 / taskcost
) = tasks
* taskcost
= (500~1000)*0.1 = 50~100 个线程。 corePoolSize
设置应该大于 50
⬤ 根据 8020
原则,如果 80%
的每秒任务数小于 800
,那么 corePoolSize
设置为 80
即可
2、queueCapacity
= ( coreSizePool
/ taskcost
) * responsetime
= 80 / 0.1 * 1 = 800 ( 0.1
线程池可处理80个任务,1s
线程池可处理800个任务)也就是说队列里的线程可以等待 1s
,超过了的需要新开线程来执行
⬤ 切记不能设置为 Integer.MAX_VALU
E,这样队列会很大,线程数只会保持在 corePoolSize
大小,当任务陡增时,不能新开线程来执行,响应时间会随之陡增。
3、maxPoolSize
= ( max
( tasks
) - queueCapacity
) / ( 1 / taskcost
)(最大任务数-队列容量)/ 每个线程每秒处理能力 = 最大线程数)
4、rejectedExecutionHandler
:根据具体情况来决定,任务不重要可丢弃,任务重要则要利用一些缓冲机制来处理。
5、keepAliveTime
和 allowCoreThreadTimeout
采用默认通常能满足。
3.4.5、线程池使用建议
1、线程维护方式:线程资源需通过线程池提供,不应在应用中自行显式创建线程,通过池化管理系统资源,避免频繁创建销毁线程带来额外系统开销。
2、线程命名规范:创建线程或线程池时需指定有意义的线程名称,出现系统问题时可提升定位效率。
3、线程池参数设置:在创建线程池时,需显式指定如下参数,且需要通过压测谨慎评估各参数值,参数修改后亦需经过压测验证参数合理性,而后才可上线。
1、初始线程数/最大线程数:需通过压测设置合理值,设置过大会导致上下文切换过多消耗系统性能,设置过小会导致突发流量处理能力不足。为避免秒级突发流量而需快速创建大量线程,可将初始线程数与最大线程数设置为相同值。
2、任务队列最大长度:对应系统负载较高或任务执行耗时异常时的任务堆积能力,建议通过混沌演练模拟系统异常来设置合理值,不建议设置过大,否则当任务积压严重时可能导致频繁 GC
,从而形成恶性循环。
3、任务队列满后拒绝策略:建议设置为“丢弃”,同时针对任务丢弃进行兜底处理,确保队列满后提交任务不阻塞。
4、线程池隔离机制:了解每个并发任务的平均耗时与计算类型,针对不同类型的任务(如:强依赖/弱依赖、CPU密集/IO密集、长任务/短任务、高优先级/低优先级等),可各自运行在独立线程池中,避免互相干扰。“线程”作为线程池中的有限资源,需尽量避免线程资源耗尽后带来的负面影响。
5、线程池监控机制:系统运行期间需对所有线程池进行监控覆盖,包括当前线程数、队列积压任务数、拒绝次数等,出现系统故障时可通过线程池监控快速定位。
6、并发任务超时设置:针对线程池中的 IO
操作( RPC
/网络IO
/磁盘 IO
等)需妥善设置超时时间,对于超时时间的设置建议请阅读:。
7、线程上下文使用风险:许多场景会通过线程上下文传递数据,容易出现线程上下文污染现象(其他任务读取到错误的线程上下文数据),在任务退出前需确保所有线程上下文数据完成清理。
5、常见业务线程池配置
1)JSF
线程池
一个端口(即一个
jsf:server
)后有一个业务线程池。目前业务线程池支持固定(fixed
)和伸缩的(cached
)两种线程池类型。通过配置threadpool
线程池类型,通过threads
配置最大线程数。业务线程池同时支持队列,可通过queuetype
配置线程池队列类型,通过queues
参数配置队列大小。
线程池类型 | 初始线程数 | 最大线程数 | 队列大小 | 说明 | 优点 | 缺点 | |
---|---|---|---|---|---|---|---|
伸缩有队列线程池 | cached | 20 | 100 | 256 | 任务来了先丢到队列中,队列满了才会增加线程,直到线程满, 得不到执行线程抛异常 | 节约线程资源,空闲一分钟自动回收,需要时重建; 队列带来一定的并发缓冲功能 | 队列带来一定的执行延迟 |
伸缩无队列线程池(默认) | cached | 20 | 200 | 0 | 任务来了直接分配线程,直到线程池满,得不到执行线程抛异常 | 节约线程资源,空闲一分钟自动回收,需要时重建; | 并发突然变大无缓冲 |
固定有队列线程池 | fixed | 100 | 100 | 256 | 线程数量固定,没有拿到线程丢到队列里,得不到执行线程抛异常 | 没有线程伸缩带来的性能问题; 队列带来一定的并发缓冲功能 | 队列带来一定的执行延迟 |
固定无队列线程池 | fixed | 200 | 200 | 0 | 线程数量固定,得不到执行线程抛异常 | 没有线程伸缩带来的性能问题 | 并发突然变大无缓冲 |
4、线程池类详解
public interface ExecutorService extends Executor {}
public abstract class AbstractExecutorService implements ExecutorService {}
public class ThreadPoolExecutor extends AbstractExecutorService {}
public interface ScheduledExecutorService extends ExecutorService {}
public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService {}
4.1、接口 Executor
Executor
接口中定义了execute()
方法,用来接收一个Runnable
接口的对象,⬤
Executor
接口中execute()
方法不返回任何结果,而ExecutorService
接口中submit()
方法可以通过一个Future
对象返回运算结果
public interface ExecutorService extends Executor {}
4.2、接口 ExecutorService
ExecutorService
接口中定义的submit()
方法可以接收Runnable
和Callable
接口对象⬤
Executor
接口中execute()
方法不返回任何结果,而ExecutorService
接口中submit()
方法可以通过一个Future
对象返回运算结果⬤
Executor
和ExecutorService
除了允许客户端提交一个任务,ExecutorService
还提供用来控制线程池的方法。比如:调用shutDown()
方法终止线程池。
public interface ExecutorService extends Executor {}
4.3、类 Executors
Executors
类提供工厂方法用来创建不同类型的线程池
ExecutorService executorService = Executors.newSingleThreadExecutor();
4.4、类 ThreadPoolExecutor
这个类是
JDK
中的线程池类,继承自Executor
里面有一个execute()
方法,用来执行线程,线程池主要提供一个线程队列,队列中保存着所有等待状态的线程。⬤ 支持
submit
和execute
public class ThreadPoolExecutor extends AbstractExecutorService {
package com.healerjean.proj.d05_线程池;
import lombok.extern.slf4j.Slf4j;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Component;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicLong;
/**
* 线程池工具
*
* @author zhangyujin
* @date 2023-07-05 09:07:42
*/
@Slf4j
@Component
public class ThreadPoolUtils {
/**
* 线程池工具 - DEFAULT_THREAD_POOL_EXECUTOR
*/
public static ThreadPoolExecutor DEFAULT_THREAD_POOL_EXECUTOR;
static {
DEFAULT_THREAD_POOL_EXECUTOR = buildDefaultThreadPoolExecutor();
}
/**
* 构建默认线程池-ThreadPoolExecutor
*
* @return ThreadPoolExecutor
*/
private static ThreadPoolExecutor buildDefaultThreadPoolExecutor() {
int corePoolSize = 10;
int maximumPoolSize = 100;
long keepAliveTime = 60;
TimeUnit unit = TimeUnit.SECONDS;
BlockingQueue<Runnable> workQueue = new LinkedBlockingQueue<>(500);
ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat("defaultThreadPoolExecutor-%d").build();
RejectedExecutionHandler handler = new ThreadPoolExecutor.CallerRunsPolicy();
return new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
}
@Test
public void testThreadPoolExecutor() {
ThreadPoolExecutor defaultThreadPoolExecutor = ThreadPoolUtils.DEFAULT_THREAD_POOL_EXECUTOR;
for (int i = 0; i < 20; i++) {
int finalI = i;
defaultThreadPoolExecutor.submit(() -> System.out.println(finalI + " " +
Thread.currentThread().getName()));
}
}
}
4.5、类 ThreadPoolTaskExecutor
这个类则是
spring
包下的,是sring
为我们提供的线程池类,可以使用基于xml配置的方式创建.⬤ 支持
submit
和execute
package com.healerjean.proj.d05_线程池;
import lombok.extern.slf4j.Slf4j;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Component;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicLong;
/**
* 线程池工具
*
* @author zhangyujin
* @date 2023-07-05 09:07:42
*/
@Slf4j
@Component
public class ThreadPoolUtils {
/**
* 默认线程池工具 - DEFAULT_THREAD_POOL_TASK_EXECUTOR
*/
public static ThreadPoolTaskExecutor DEFAULT_THREAD_POOL_TASK_EXECUTOR;
static {
DEFAULT_THREAD_POOL_TASK_EXECUTOR = buildDefaultThreadPoolTaskExecutor();
}
/**
* 构建默认线程池-ThreadPoolTaskExecutor
*
* @return ThreadPoolTaskExecutor
*/
private static ThreadPoolTaskExecutor buildDefaultThreadPoolTaskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
// 核心线程数:线程池创建时候初始化的线程数
taskExecutor.setCorePoolSize(10);
// 最大线程数:只有在缓冲队列满了之后才会申请超过核心线程数的线程
taskExecutor.setMaxPoolSize(100);
// 线程池维护线程所允许的空闲时间:当超过了核心线程出之外的线程在空闲时间到达之后会被销毁
taskExecutor.setKeepAliveSeconds(60);
// 缓存队列:用来缓冲执行任务的队列
taskExecutor.setQueueCapacity(500);
// 线程工厂
taskExecutor.setThreadFactory(new ThreadFactoryBuilder().setNameFormat("defaultThreadPoolTaskExecutor-%d").build());
// 拒绝策略由调用线程处理该任务
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
// 以下这两个配置选项通常一起使用,以确保线程池在关闭时能够优雅地处理所有任务,同时避免应用因为等待任务完成而无限期地挂起。例如,在Spring Boot应用中,你可能会在配置类中这样配置线程池
// 调设置为true时,线程池会等待所有已提交的任务(包括正在执行的和队列中等待的任务)完成后再关闭。这确保了所有任务都有机会执行完毕。
// 如果设置为false,线程池会立即尝试停止所有正在执行的任务,并且不再启动队列中等待的任务
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
// 用于设置线程池在尝试关闭时等待任务完成的最长时间(以秒为单位)。如果在指定的时间内,所有任务没有完成,线程池会强制停止所有正在执行的任务,并继续关闭过程。
// 这个参数与setWaitForTasksToCompleteOnShutdown(true)配合使用,确保即使在线程池关闭时,应用也不会无限期地等待任务完成,从而避免应用无法正常关闭的问题
taskExecutor.setAwaitTerminationSeconds(60);
taskExecutor.initialize();
log.info("Executor - defaultThreadPoolTaskExecutor injected!");
return taskExecutor;
}
@Test
public void testThreadPoolTaskExecutor() {
ThreadPoolTaskExecutor defaultThreadPoolTaskExecutor = ThreadPoolUtils.DEFAULT_THREAD_POOL_TASK_EXECUTOR;
for (int i = 0; i < 20; i++) {
int finalI = i;
defaultThreadPoolTaskExecutor.submit(() -> System.out.println(finalI + " " +
Thread.currentThread().getName()));
}
}
0 defaultThreadPoolTaskExecutor2
1 defaultThreadPoolTaskExecutor3
2 defaultThreadPoolTaskExecutor4
3 defaultThreadPoolTaskExecutor5
4 defaultThreadPoolTaskExecutor6
5 defaultThreadPoolTaskExecutor7
6 defaultThreadPoolTaskExecutor8
7 defaultThreadPoolTaskExecutor9
8 defaultThreadPoolTaskExecutor10
9 defaultThreadPoolTaskExecutor11
10 defaultThreadPoolTaskExecutor2
12 defaultThreadPoolTaskExecutor4
14 defaultThreadPoolTaskExecutor3
15 defaultThreadPoolTaskExecutor5
18 defaultThreadPoolTaskExecutor7
11 defaultThreadPoolTaskExecutor11
19 defaultThreadPoolTaskExecutor8
17 defaultThreadPoolTaskExecutor3
16 defaultThreadPoolTaskExecutor6
13 defaultThreadPoolTaskExecutor2
}
4.6、接口 CompletionService
CompletionService
与ExecutorService
类似都可以用来执行线程池的任务,ExecutorService
继承了Executor
接口,而CompletionService
则是一个接口
方法 | 说明 |
---|---|
completionService.take() |
take() 方法会阻塞线程,直到有已经完成的任务可用为止。 |
completionService.poll() |
poll() 方法会立即返回一个已经完成的任务,如果没有已经完成的任务,它会返回 null ; |
completionService.poll(5,TimeUnit.SECONDS) |
阻塞线程等待指定时间,如果有完成结果返回,没有的直接返回null。 |
原理:
1、CompletionService
实际上可以看做是 Executor
和 BlockingQueue
的结合体。CompletionService
在接收到要执行的任务时,通过类似 BlockingQueue
的 put
和 take
获得任务执行的结果。CompletionService
的一个实现是ExecutorCompletionService
,ExecutorCompletionService
把具体的计算任务交给 Executor
完成。
2、在实现上,ExecutorCompletionService
在构造函数中会创建一个 BlockingQueue
(使用的基于链表的无界队列LinkedBlockingQueue
),该 BlockingQueue
的作用是保存 Executor
执行的结果。当计算完成时,调用 FutureTask
的 done
方法。当提交一个任务到 ExecutorCompletionService
时,首先将任务包装成 QueueingFuture
,它是 FutureTask
的一个子类,然后改 写 FutureTask
的 done
方法,之后把 Executor
执行的计算结果放入 BlockingQueue
中。
小结:
1、相比 ExecutorService
,CompletionService
可以更精确和简便地完成异步任务的执行
2、CompletionService
的一个实现是 ExecutorCompletionService
,它是 Executor
和 BlockingQueue
功能的融合体,Executor
完成计算任务,BlockingQueue
负责保存异步任务的执行结果
3、在执行大量相互独立和同构的任务时,可以使用 CompletionService
4、CompletionService
可以为任务的执行设置时限,主要是通过 BlockingQueue
的 poll
(long time,TimeUnit unit)为任务执行结果的取得限制时间,如果没有完成就取消任务
public ThreadPoolTaskExecutor threadPoolTaskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
// 核心线程数:线程池创建时候初始化的线程数
taskExecutor.setCorePoolSize(10);
// 最大线程数:只有在缓冲队列满了之后才会申请超过核心线程数的线程
taskExecutor.setMaxPoolSize(100);
// 缓存队列:用来缓冲执行任务的队列
taskExecutor.setQueueCapacity(500);
// 线程池维护线程所允许的空闲时间:当超过了核心线程出之外的线程在空闲时间到达之后会被销毁
taskExecutor.setKeepAliveSeconds(60);
// threadPoolTaskExecutor
taskExecutor.setThreadNamePrefix("threadPoolTaskExecutor");
// 调度器shutdown被调用时等待当前被调度的任务完成:用来设置线程池关闭的时候等待所有任务都完成再继续销毁其他的Bean
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
//该方法用来设置线程池中任务的等待时间:如果超过这个时候还没有销毁就强制销毁,以确保应用最后能够被关闭,而不是阻塞住
taskExecutor.setAwaitTerminationSeconds(60);
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
taskExecutor.initialize();
log.info("Executor - threadPoolTaskExecutor injected!");
return taskExecutor;
}
@Test
public void testTimeOut() throws InterruptedException, ExecutionException {
ThreadPoolTaskExecutor threadPoolTaskExecutor = threadPoolTaskExecutor();
CompletionService<String> completionService = new ExecutorCompletionService<>(threadPoolTaskExecutor);
List<Future<String>> futures = Arrays.asList(
completionService.submit(() -> {
Thread.sleep(5000);
return "5000";
}),
completionService.submit(() -> {
Thread.sleep(1000);
return "1000";
}),
completionService.submit(() -> {
Thread.sleep(6000);
return "6000";
})
);
int timeOut = 2500;
for (int i = 0; i < futures.size(); i++) {
Future<String> future = completionService.poll(timeOut, TimeUnit.MILLISECONDS);
if (future == null){
System.out.println("获取任务超时");
continue;
}
System.out.println(future.get());
}
}
5、动态线程池
5.1、ThreadPoolConfig
package com.jd.merchant.business.platform.core.service.util.threadpool;
import lombok.Data;
import org.springframework.util.StringUtils;
import java.io.Serializable;
import java.util.Objects;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor.AbortPolicy;
import java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy;
import java.util.concurrent.ThreadPoolExecutor.DiscardOldestPolicy;
import java.util.concurrent.ThreadPoolExecutor.DiscardPolicy;
/**
* 线程池配置属性
*
* @author zhangyujin
* @date 2023/6/13 18:01
*/
@Data
public class ThreadPoolConfig implements Serializable {
/**
* serialVersionUID
*/
private static final long serialVersionUID = 6763948033008435707L;
/**
* 线程名称
*/
private String name;
/**
* 核心线程数
*/
private int corePoolSize;
/**
* 最大线程数
*/
private int maximumPoolSize;
/**
* 存活时间(秒)
*/
private int keepAliveSeconds;
/**
* 队列长度
*/
private int queueCapacity;
/**
* 拒绝策略名称
*/
private String rejectPolicyName;
/**
*
* 拒绝策略
*/
private RejectedExecutionHandler rejectPolicy;
/**
* 队列类型名称
*/
private String queueTypeName;
/**
* 队列类型
*/
private BlockingQueue<Runnable> queueType;
/**
*
*/
public ThreadPoolConfig() {
}
/**
* ThreadPoolConfiguration
*
* @param name name
* @param corePoolSize corePoolSize
* @param maximumPoolSize maximumPoolSize
* @param keepAliveSeconds keepAliveSeconds
* @param queueCapacity queueCapacity
* @param rejectPolicyEnum rejectPolicyEnum
* @param queueTypeEnum queueTypeEnum
*/
public ThreadPoolConfig(String name, int corePoolSize, int maximumPoolSize, int keepAliveSeconds, int queueCapacity,
ThreadEnum.RejectPolicyEnum rejectPolicyEnum, ThreadEnum.QueueEnum queueTypeEnum) {
this.name = name;
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.keepAliveSeconds = keepAliveSeconds;
this.queueCapacity = queueCapacity;
this.rejectPolicyName = rejectPolicyEnum.getCode();
buildRejectedExecutionHandler(rejectPolicyEnum);
buildQueueType(queueTypeEnum);
}
/**
* 拒绝策略映射
*
* @param rejectPolicyEnum rejectPolicyEnum
*/
public void buildRejectedExecutionHandler(ThreadEnum.RejectPolicyEnum rejectPolicyEnum) {
if (Objects.isNull(rejectPolicyEnum)) {
this.rejectPolicy = new CallerRunsPolicy();
return;
}
RejectedExecutionHandler rejectedExecutionHandler;
switch (rejectPolicyEnum) {
case ABORT_POLICY:
rejectedExecutionHandler = new AbortPolicy();
break;
case DISCARD_POLICY:
rejectedExecutionHandler = new DiscardPolicy();
break;
case DISCARD_OLDEST_POLICY:
rejectedExecutionHandler = new DiscardOldestPolicy();
break;
default:
rejectedExecutionHandler = new CallerRunsPolicy();
}
this.rejectPolicy = rejectedExecutionHandler;
}
/**
* 队列类型映射
*
* @param queueTypeEnum queueTypeEnum
*/
public void buildQueueType(ThreadEnum.QueueEnum queueTypeEnum) {
if (ThreadEnum.QueueEnum.SYNCHRONOUS_QUEUE == queueTypeEnum) {
this.queueType = new SynchronousQueue<>();
return;
}
//默认类型:自定义无界缓存等待队列
this.queueType = new ResizeableCapacityLinkedBlockingQueue<>(this.queueCapacity);
}
}
5.2、ThreadEnum
package com.jd.merchant.business.platform.core.service.util.threadpool;
import java.util.Arrays;
/**
* ThreadEnum
*
* @author zhangyujin
* @date 2023/6/13 21:46.
*/
public interface ThreadEnum {
/**
* RejectPolicyEnum
*
* @author zhangyujin
* @date 2023/4/14 11:33.
*/
enum RejectPolicyEnum implements ThreadEnum {
/**
* RejectPolicyEnum
*/
ABORT_POLICY("AbortPolicy", "丢弃任务并抛出RejectedExecutionException异常"),
DISCARD_POLICY("DiscardPolicy", "丢弃任务,但是不抛出异常。"),
DISCARD_OLDEST_POLICY("DiscardOldestPolicy", "丢弃队列最前面的任务,然后重新提交被拒绝的任务。"),
CALLER_RUNS_POLICY("CallerRunsPolicy", "由调用线程处理该任务"),
;
/**
* code
*/
private final String code;
/**
* desc
*/
private final String desc;
/**
* RejectPolicyEnum
*
* @param code code
* @param desc desc
*/
RejectPolicyEnum(String code, String desc) {
this.code = code;
this.desc = desc;
}
/**
* RejectPolicyEnum
*
* @param code code
* @return RejectPolicyEnum
*/
public static RejectPolicyEnum toRejectPolicyEnum(String code) {
return Arrays.stream(RejectPolicyEnum.values()).filter(item -> item.getCode().equals(code)).findAny().orElse(null);
}
public String getCode() {
return code;
}
public String getDesc() {
return desc;
}
}
/**
* QueueEnum
*
* @author zhangyujin
* @date 2023/4/14 11:33.
*/
enum QueueEnum implements ThreadEnum {
/**
* QueueEnum
*/
SYNCHRONOUS_QUEUE("SynchronousQueue", "无缓冲等待队列"),
RESIZEABLE_CAPACITY_LINKED_BLOCKING_QUEUE("LinkedBlockingQueue", "无界缓存等待队列"),
;
/**
* code
*/
private final String code;
/**
* desc
*/
private final String desc;
/**
* QueueEnum
*
* @param code code
* @param desc desc
*/
QueueEnum(String code, String desc) {
this.code = code;
this.desc = desc;
}
/**
* QueueEnum
*
* @param code code
* @return QueueEnum
*/
public static QueueEnum toQueueEnum(String code) {
return Arrays.stream(QueueEnum.values()).filter(item -> item.getCode().equals(code)).findAny().orElse(null);
}
public String getCode() {
return code;
}
public String getDesc() {
return desc;
}
}
/**
* QueueEnum
*
* @author zhangyujin
* @date 2023/4/14 11:33.
*/
enum ThreadPoolEnum implements ThreadEnum {
/**
* QueueEnum
*/
DEFAULT("default", "默认线程池名称"),
RPC("rpc", "rpc线程池名称"),
;
/**
* code
*/
private final String code;
/**
* desc
*/
private final String desc;
/**
* QueueEnum
*
* @param code code
* @param desc desc
*/
ThreadPoolEnum(String code, String desc) {
this.code = code;
this.desc = desc;
}
/**
* ThreadPoolEnum
*
* @param code code
* @return ThreadPoolEnum
*/
public static ThreadPoolEnum toQueueEnum(String code) {
return Arrays.stream(ThreadPoolEnum.values()).filter(item -> item.getCode().equals(code)).findAny().orElse(null);
}
public String getCode() {
return code;
}
public String getDesc() {
return desc;
}
}
}
5.3、ResizeableCapacityLinkedBlockingQueue
美团的方式是自定义了一个叫做
ResizableCapacityLinkedBlockIngQueue
的队列(主要就是把LinkedBlockingQueue
的capacity
字段的final
关键字修饰给去掉了,让它变为可变的)
package com.jd.merchant.business.platform.core.service.util.threadpool;
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Consumer;
/**
* An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
* linked nodes.
* This queue orders elements FIFO (first-in-first-out).
* The <em>head</em> of the queue is that element that has been on the
* queue the longest time.
* The <em>tail</em> of the queue is that element that has been on the
* queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
* Linked queues typically have higher throughput than array-based queues but
* less predictable performance in most concurrent applications.
*
* <p>The optional capacity bound constructor argument serves as a
* way to prevent excessive queue expansion. The capacity, if unspecified,
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are
* dynamically created upon each insertion unless this would bring the
* queue above capacity.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <E> the type of elements held in this collection
* @date
*/
public class ResizeableCapacityLinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
/**
*
*/
private static final long serialVersionUID = -6903933977591709194L;
/*
* A variant of the "two lock queue" algorithm. The putLock gates
* entry to put (and offer), and has an associated condition for
* waiting puts. Similarly for the takeLock. The "count" field
* that they both rely on is maintained as an atomic to avoid
* needing to get both locks in most cases. Also, to minimize need
* for puts to get takeLock and vice-versa, cascading notifies are
* used. When a put notices that it has enabled at least one take,
* it signals taker. That taker in turn signals others if more
* items have been entered since the signal. And symmetrically for
* takes signalling puts. Operations such as remove(Object) and
* iterators acquire both locks.
*
* Visibility between writers and readers is provided as follows:
*
* Whenever an element is enqueued, the putLock is acquired and
* count updated. A subsequent reader guarantees visibility to the
* enqueued Node by either acquiring the putLock (via fullyLock)
* or by acquiring the takeLock, and then reading n = count.get();
* this gives visibility to the first n items.
*
* To implement weakly consistent iterators, it appears we need to
* keep all Nodes GC-reachable from a predecessor dequeued Node.
* That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to advance to head.next.
*/
/**
* Linked list node class
*/
static class Node<E> {
/**
*
*/
E item;
/**
* One of:
* - the real successor Node
* - this Node, meaning the successor is head.next
* - null, meaning there is no successor (this is the last node)
*/
Node<E> next;
/**
*
*/
Node(E x) { item = x; }
}
/** The capacity bound, or Integer.MAX_VALUE if none */
private volatile int capacity;
public int getCapacity() {
return capacity;
}
public void setCapacity(int capacity) {
while (count.get() <= capacity){
this.capacity = capacity;
break;
}
}
/** Current number of elements */
private final AtomicInteger count = new AtomicInteger();
/**
* Head of linked list.
* Invariant: head.item == null
*/
transient Node<E> head;
/**
* Tail of linked list.
* Invariant: last.next == null
*/
private transient Node<E> last;
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();
/**
* Signals a waiting take. Called only from put/offer (which do not
* otherwise ordinarily lock takeLock.)
*/
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
/**
* Signals a waiting put. Called only from take/poll.
*/
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
/**
* Links node at end of queue.
*
* @param node the node
*/
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
/**
* Removes a node from head of queue.
*
* @return the node
*/
private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
/**
* Locks to prevent both puts and takes.
*/
void fullyLock() {
putLock.lock();
takeLock.lock();
}
/**
* Unlocks to allow both puts and takes.
*/
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
// /**
// * Tells whether both locks are held by current thread.
// */
// boolean isFullyLocked() {
// return (putLock.isHeldByCurrentThread() &&
// takeLock.isHeldByCurrentThread());
// }
/**
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public ResizeableCapacityLinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public ResizeableCapacityLinkedBlockingQueue(int capacity) {
if (capacity <= 0) {
throw new IllegalArgumentException();
}
this.capacity = capacity;
last = head = new Node<E>(null);
}
/**
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of the
* given collection,
* added in traversal order of the collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ResizeableCapacityLinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // Never contended, but necessary for visibility
try {
int n = 0;
for (E e : c) {
if (e == null) {
throw new NullPointerException();
}
if (n == capacity) {
throw new IllegalStateException("Queue full");
}
enqueue(new Node<E>(e));
++n;
}
count.set(n);
} finally {
putLock.unlock();
}
}
// this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
/**
* Returns the number of elements in this queue.
*
* @return the number of elements in this queue
*/
@Override
public int size() {
return count.get();
}
// this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
/**
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current {@code size} of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
@Override
public int remainingCapacity() {
return capacity - count.get();
}
/**
* Inserts the specified element at the tail of this queue, waiting if
* necessary for space to become available.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
@Override
public void put(E e) throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from capacity. Similarly
* for all other uses of count in other wait guards.
*/
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
}
/**
* Inserts the specified element at the tail of this queue, waiting if
* necessary up to the specified wait time for space to become available.
*
* @return {@code true} if successful, or {@code false} if
* the specified waiting time elapses before space is available
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
@Override
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
if (nanos <= 0) {
return false;
}
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
return true;
}
/**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning {@code true} upon success and {@code false} if this queue
* is full.
* When using a capacity-restricted queue, this method is generally
* preferable to method {@link BlockingQueue#add add}, which can fail to
* insert an element only by throwing an exception.
*
* @throws NullPointerException if the specified element is null
*/
@Override
public boolean offer(E e) {
if (e == null) {
throw new NullPointerException();
}
final AtomicInteger count = this.count;
if (count.get() == capacity) {
return false;
}
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
return c >= 0;
}
@Override
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0) {
return null;
}
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0) {
return null;
}
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E peek() {
if (count.get() == 0) {
return null;
}
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
Node<E> first = head.next;
if (first == null) {
return null;
} else {
return first.item;
}
} finally {
takeLock.unlock();
}
}
/**
* Unlinks interior Node p with predecessor trail.
*/
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
trail.next = p.next;
if (last == p) {
last = trail;
}
if (count.getAndDecrement() == capacity) {
notFull.signal();
}
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
@Override
public boolean remove(Object o) {
if (o == null) {
return false;
}
fullyLock();
try {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
/**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
@Override
public boolean contains(Object o) {
if (o == null) {
return false;
}
fullyLock();
try {
for (Node<E> p = head.next; p != null; p = p.next) {
if (o.equals(p.item)) {
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
@Override
public Object[] toArray() {
fullyLock();
try {
int size = count.get();
Object[] a = new Object[size];
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next) {
a[k++] = p.item;
}
return a;
} finally {
fullyUnlock();
}
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the queue fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this queue.
*
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of {@code String}:
*
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
@Override
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
fullyLock();
try {
int size = count.get();
if (a.length < size) {
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), size);
}
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next) {
a[k++] = (T)p.item;
}
if (a.length > k) {
a[k] = null;
}
return a;
} finally {
fullyUnlock();
}
}
@Override
public String toString() {
fullyLock();
try {
Node<E> p = head.next;
if (p == null) {
return "[]";
}
StringBuilder sb = new StringBuilder();
sb.append('[');
for (;;) {
E e = p.item;
sb.append(e == this ? "(this Collection)" : e);
p = p.next;
if (p == null) {
return sb.append(']').toString();
}
sb.append(',').append(' ');
}
} finally {
fullyUnlock();
}
}
/**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
@Override
public void clear() {
fullyLock();
try {
for (Node<E> p, h = head; (p = h.next) != null; h = p) {
h.next = h;
p.item = null;
}
head = last;
// assert head.item == null && head.next == null;
if (count.getAndSet(0) == capacity) {
notFull.signal();
}
} finally {
fullyUnlock();
}
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
@Override
public int drainTo(Collection<? super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
@Override
public int drainTo(Collection<? super E> c, int maxElements) {
if (c == null) {
throw new NullPointerException();
}
if (c == this) {
throw new IllegalArgumentException();
}
if (maxElements <= 0) {
return 0;
}
boolean signalNotFull = false;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
int n = Math.min(maxElements, count.get());
// count.get provides visibility to first n Nodes
Node<E> h = head;
int i = 0;
try {
while (i < n) {
Node<E> p = h.next;
c.add(p.item);
p.item = null;
h.next = h;
h = p;
++i;
}
return n;
} finally {
// Restore invariants even if c.add() threw
if (i > 0) {
// assert h.item == null;
head = h;
signalNotFull = (count.getAndAdd(-i) == capacity);
}
}
} finally {
takeLock.unlock();
if (signalNotFull) {
signalNotFull();
}
}
}
/**
* Returns an iterator over the elements in this queue in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned iterator is
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
*
* @return an iterator over the elements in this queue in proper sequence
*/
@Override
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
/*
* Basic weakly-consistent iterator. At all times hold the next
* item to hand out so that if hasNext() reports true, we will
* still have it to return even if lost race with a take etc.
*/
/**
*
*/
private Node<E> current;
/**
*
*/
private Node<E> lastRet;
/**
*
*/
private E currentElement;
/**
*
*/
Itr() {
fullyLock();
try {
current = head.next;
if (current != null) {
currentElement = current.item;
}
} finally {
fullyUnlock();
}
}
@Override
public boolean hasNext() {
return current != null;
}
/**
* Returns the next live successor of p, or null if no such.
*
* Unlike other traversal methods, iterators need to handle both:
* - dequeued nodes (p.next == p)
* - (possibly multiple) interior removed nodes (p.item == null)
*/
private Node<E> nextNode(Node<E> p) {
for (;;) {
Node<E> s = p.next;
if (s == p) {
return head.next;
}
if (s == null || s.item != null) {
return s;
}
p = s;
}
}
@Override
public E next() {
fullyLock();
try {
if (current == null) {
throw new NoSuchElementException();
}
E x = currentElement;
lastRet = current;
current = nextNode(current);
currentElement = (current == null) ? null : current.item;
return x;
} finally {
fullyUnlock();
}
}
@Override
public void remove() {
if (lastRet == null) {
throw new IllegalStateException();
}
fullyLock();
try {
Node<E> node = lastRet;
lastRet = null;
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (p == node) {
unlink(p, trail);
break;
}
}
} finally {
fullyUnlock();
}
}
}
/** A customized variant of Spliterators.IteratorSpliterator */
static final class LBQSpliterator<E> implements Spliterator<E> {
/**
*
*/
static final int MAX_BATCH = 1 << 25; // max batch array size;
/**
*
*/
final ResizeableCapacityLinkedBlockingQueue<E> queue;
/**
*
*/
Node<E> current; // current node; null until initialized
/**
*
*/
int batch; // batch size for splits
/**
*
*/
boolean exhausted; // true when no more nodes
/**
*
*/
long est; // size estimate
/**
*
*/
LBQSpliterator(ResizeableCapacityLinkedBlockingQueue<E> queue) {
this.queue = queue;
this.est = queue.size();
}
@Override
public long estimateSize() { return est; }
@Override
public Spliterator<E> trySplit() {
Node<E> h;
final ResizeableCapacityLinkedBlockingQueue<E> q = this.queue;
int b = batch;
int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
if (!exhausted &&
((h = current) != null || (h = q.head.next) != null) &&
h.next != null) {
Object[] a = new Object[n];
int i = 0;
Node<E> p = current;
q.fullyLock();
try {
if (p != null || (p = q.head.next) != null) {
do {
if ((a[i] = p.item) != null) {
++i;
}
} while ((p = p.next) != null && i < n);
}
} finally {
q.fullyUnlock();
}
if ((current = p) == null) {
est = 0L;
exhausted = true;
}
else if ((est -= i) < 0L) {
est = 0L;
}
if (i > 0) {
batch = i;
return Spliterators.spliterator
(a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT);
}
}
return null;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizeableCapacityLinkedBlockingQueue<E> q = this.queue;
if (!exhausted) {
exhausted = true;
Node<E> p = current;
do {
E e = null;
q.fullyLock();
try {
if (p == null) {
p = q.head.next;
}
while (p != null) {
e = p.item;
p = p.next;
if (e != null) {
break;
}
}
} finally {
q.fullyUnlock();
}
if (e != null) {
action.accept(e);
}
} while (p != null);
}
}
@Override
public boolean tryAdvance(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizeableCapacityLinkedBlockingQueue<E> q = this.queue;
if (!exhausted) {
E e = null;
q.fullyLock();
try {
if (current == null) {
current = q.head.next;
}
while (current != null) {
e = current.item;
current = current.next;
if (e != null) {
break;
}
}
} finally {
q.fullyUnlock();
}
if (current == null) {
exhausted = true;
}
if (e != null) {
action.accept(e);
return true;
}
}
return false;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT;
}
}
/**
* Returns a {@link Spliterator} over the elements in this queue.
*
* <p>The returned spliterator is
* <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
*
* <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
* {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
*
* @implNote
* The {@code Spliterator} implements {@code trySplit} to permit limited
* parallelism.
*
* @return a {@code Spliterator} over the elements in this queue
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new LBQSpliterator<E>(this);
}
/**
* Saves this queue to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The capacity is emitted (int), followed by all of
* its elements (each an {@code Object}) in the proper order,
* followed by a null
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
fullyLock();
try {
// Write out any hidden stuff, plus capacity
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = head.next; p != null; p = p.next) {
s.writeObject(p.item);
}
// Use trailing null as sentinel
s.writeObject(null);
} finally {
fullyUnlock();
}
}
/**
* Reconstitutes this queue from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
count.set(0);
last = head = new Node<E>(null);
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null) {
break;
}
add(item);
}
}
}
5.4、ThreadPoolUtils
package com.jd.merchant.business.platform.core.service.util.threadpool;
import com.alibaba.fastjson.JSONObject;
import com.jd.merchant.business.platform.core.common.UmpConstants;
import com.jd.merchant.business.platform.core.common.property.DuccThreadPoolProp;
import com.jd.ump.profiler.proxy.Profiler;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.concurrent.BasicThreadFactory;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
/**
* ThreadPoolUtils
*
* @author zhangyujin
* @date 2023/6/13 18:17
*/
@Slf4j
@Component
public class ThreadPoolUtils {
/**
* 统一配置中心ducc
*/
@Resource
private DuccThreadPoolProp dcThreadPoolProp;
/**
* 锁
*/
private final static ReentrantLock LOCK = new ReentrantLock();
/**
* 默认线程池
*/
public static ThreadPoolExecutor DEFAULT_THREAD_POOL_EXECUTOR;
/**
* 自定义线程池 rpc
*/
public static ThreadPoolExecutor RPC_THREAD_POOL_EXECUTOR;
/**
* 初始化线程池并启动定时监测任务
*/
@PostConstruct
private void init() {
DEFAULT_THREAD_POOL_EXECUTOR = buildThreadPoolExecutor(ThreadEnum.ThreadPoolEnum.DEFAULT);
RPC_THREAD_POOL_EXECUTOR = buildThreadPoolExecutor(ThreadEnum.ThreadPoolEnum.RPC);
//定时任务
Runnable poolThreadTask = () -> {
updateExecutorConfig(DEFAULT_THREAD_POOL_EXECUTOR, ThreadEnum.ThreadPoolEnum.DEFAULT);
updateExecutorConfig(RPC_THREAD_POOL_EXECUTOR, ThreadEnum.ThreadPoolEnum.RPC);
};
ScheduledExecutorService scheduledExecutor = new ScheduledThreadPoolExecutor(
1,
new BasicThreadFactory.Builder().namingPattern("thread-pool-monitor-task-%d").daemon(true).build());
scheduledExecutor.scheduleAtFixedRate(poolThreadTask,
5000,
1000,
TimeUnit.MILLISECONDS);
}
/**
* 更新线程池参数并上报ump
*
* @param executor executor
* @param threadPoolEnum threadPoolEnum
*/
private void updateExecutorConfig(ThreadPoolExecutor executor, ThreadEnum.ThreadPoolEnum threadPoolEnum) {
String poolName = threadPoolEnum.getCode();
log.info("updateExecutorConfig start");
LOCK.lock();
try {
ThreadPoolConfig conf = getThreadPoolConfigFromDucc(poolName);
if (conf.getCorePoolSize() != 0 && conf.getCorePoolSize() != executor.getCorePoolSize()) {
executor.setCorePoolSize(conf.getCorePoolSize());
}
if (conf.getMaximumPoolSize() != 0 && conf.getMaximumPoolSize() != executor.getMaximumPoolSize()) {
executor.setMaximumPoolSize(conf.getMaximumPoolSize());
}
if (conf.getKeepAliveSeconds() != 0 && conf.getKeepAliveSeconds() != executor.getKeepAliveTime(TimeUnit.SECONDS)) {
executor.setKeepAliveTime(conf.getKeepAliveSeconds(), TimeUnit.SECONDS);
}
if (executor.getQueue() instanceof ResizeableCapacityLinkedBlockingQueue) {
ResizeableCapacityLinkedBlockingQueue queue = (ResizeableCapacityLinkedBlockingQueue) executor.getQueue();
int capacity = queue.size() + queue.remainingCapacity();
if (conf.getQueueCapacity() != 0 && conf.getQueueCapacity() != capacity) {
queue.setCapacity(conf.getQueueCapacity());
}
}
if (conf.getRejectPolicy() != null && conf.getRejectPolicy() != executor.getRejectedExecutionHandler()) {
executor.setRejectedExecutionHandler(conf.getRejectPolicy());
}
//统计线程池信息
Map<String, Number> dataMap = buildCustomerProperty(executor);
log.debug("ThreadPoolUtils updateExecutorConfig poolName:{},dataMap:{}", poolName, dataMap);
Profiler.sourceDataByNum(UmpConstants.THREAD_POOL_UMP_KEY + poolName, dataMap);
} catch (Exception e) {
log.error("updateExecutorConfig error:{}", e.getMessage(), e);
} finally {
LOCK.unlock();
}
log.info("updateExecutorConfig end");
}
/**
* 自定义上报属性,字段值与ump监控配置"自定义字段"一致
*
* @param executor executor
* @return Map<String, Number>
*/
private Map<String, Number> buildCustomerProperty(ThreadPoolExecutor executor) {
Map<String, Number> dataMap = new HashMap<>(16);
dataMap.put("corePoolSize", executor.getCorePoolSize());
dataMap.put("maximumPoolSize", executor.getMaximumPoolSize());
dataMap.put("poolSize", executor.getPoolSize());
dataMap.put("activeCount", executor.getActiveCount());
dataMap.put("queueCapacity", executor.getQueue().size() + executor.getQueue().remainingCapacity());
dataMap.put("queueSize", executor.getQueue().size());
dataMap.put("remainingCapacity", executor.getQueue().remainingCapacity());
dataMap.put("completedTaskCount", executor.getCompletedTaskCount());
dataMap.put("largestPoolSize", executor.getLargestPoolSize());
return dataMap;
}
/**
* 根据名称获取线程池配置
*
* @param poolName poolName
* @return ThreadPoolConfiguration
*/
private ThreadPoolConfig getThreadPoolConfigFromDucc(String poolName) {
String threadPoolConfigs = dcThreadPoolProp.getThreadPoolConfigs();
log.debug("[ThreadPoolUtils#getThreadPoolConfFromDucc] configStr:{}", threadPoolConfigs);
List<ThreadPoolConfig> confList = JSONObject.parseArray(threadPoolConfigs, ThreadPoolConfig.class);
for (ThreadPoolConfig conf : confList) {
if (poolName.equals(conf.getName())) {
//拒绝策略映射
ThreadEnum.RejectPolicyEnum rejectPolicyEnum = ThreadEnum.RejectPolicyEnum.toRejectPolicyEnum(conf.getRejectPolicyName());
conf.buildRejectedExecutionHandler(rejectPolicyEnum);
ThreadEnum.QueueEnum queueEnum = ThreadEnum.QueueEnum.toQueueEnum(conf.getQueueTypeName());
//队列类型
conf.buildQueueType(queueEnum);
return conf;
}
}
return getDefaultConf();
}
/**
* getDefaultConf
*
* @return ThreadPoolConfiguration
*/
private static ThreadPoolConfig getDefaultConf() {
return new ThreadPoolConfig(
ThreadEnum.ThreadPoolEnum.DEFAULT.getCode(),
20,
20,
60,
1024, ThreadEnum.RejectPolicyEnum.CALLER_RUNS_POLICY,
ThreadEnum.QueueEnum.RESIZEABLE_CAPACITY_LINKED_BLOCKING_QUEUE);
}
/**
* 根据名称配置构建线程池
*
* @param threadPoolEnum threadPoolEnum
* @return ThreadPoolExecutor
*/
private ThreadPoolExecutor buildThreadPoolExecutor(ThreadEnum.ThreadPoolEnum threadPoolEnum) {
ThreadPoolConfig threadPoolConfig = getThreadPoolConfigFromDucc(threadPoolEnum.getCode());
log.info("[ThreadPoolUtils#buildThreadPoolExecutor] threadPoolConf:{}", threadPoolConfig);
return new ThreadPoolExecutor(threadPoolConfig.getCorePoolSize(),
threadPoolConfig.getMaximumPoolSize(),
threadPoolConfig.getKeepAliveSeconds(),
TimeUnit.SECONDS,
threadPoolConfig.getQueueType(),
r -> new Thread(r, threadPoolEnum.getCode()),
threadPoolConfig.getRejectPolicy()
);
}
}
四、工具
1、批量执行任务工具
1)BatchInvokeBO
@Accessors(chain = true)
@Data
public class BatchInvokeBO {
/**
* executor
*/
private Executor executor;
}
2)BatchConsumerInvokeBO
package com.healerjean.proj.data.bo.batch.stream;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.experimental.Accessors;
import java.util.List;
import java.util.concurrent.Executor;
/**
* BatchInvokeBO
*
* @author zhangyujin
* @date 2024/9/24
*/
@EqualsAndHashCode(callSuper = true)
@Accessors(chain = true)
@Data
public class BatchConsumerInvokeBO extends BatchInvokeBO {
/**
* batchConsumer
*/
private List<BatchConsumerBO> batchConsumers;
/**
* consumerOf
*
* @param batchConsumers batchConsumers
* @return {@link BatchConsumerInvokeBO}
*/
public static BatchConsumerInvokeBO of(Executor executor, List<BatchConsumerBO> batchConsumers) {
BatchConsumerInvokeBO invoke = new BatchConsumerInvokeBO();
invoke.setExecutor(executor);
invoke.setBatchConsumers(batchConsumers);
return invoke;
}
}
3)BatchConsumerBO
package com.healerjean.proj.data.bo.batch.stream;
import com.healerjean.proj.service.RedisService;
import lombok.Data;
import lombok.experimental.Accessors;
import java.io.Serializable;
import java.util.function.Consumer;
/**
* 批量消费
*
* @author zhangyujin
* @date 2024/6/14
*/
@Accessors(chain = true)
@Data
public class BatchConsumerBO implements Serializable {
/**
* serialVersionUID
*/
private static final long serialVersionUID = -7922977872203781755L;
/**
* 请求
*/
private Consumer<Object> consumer;
/**
* 请求对象
*/
private ReqBusinessBO reqBusiness;
/**
* 返回对象
*/
private ResBusinessBO resBusiness;
/**
* instance
*
*/
public static BatchConsumerBO instance() {
return new BatchConsumerBO()
.setReqBusiness(new ReqBusinessBO())
.setResBusiness(new ResBusinessBO());
}
@Accessors(chain = true)
@Data
public static class ReqBusinessBO{
/**
* 任务名
*/
private String name;
/**
* 请求对象
*/
private Object req;
/**
* 幂等对象
*/
private IdempotentBO idempotent;
/**
* 幂等对象
*/
@Accessors(chain = true)
@Data
public static class IdempotentBO{
/**
* 幂等唯一Id
*/
private String uuid;
/**
* 多久幂等(单位s)
*/
private Integer expireSec;
/**
* 幂等操作类
*/
private RedisService redisService;
}
}
@Accessors(chain = true)
@Data
public static class ResBusinessBO{
/**
* 执行结果
*/
private Boolean invokeFlag;
/**
* 执行异常信息
*/
private Exception exception;
/**
* 消费时间
*/
private Long cost;
}
}
4)BatchFunctionInvokeBO
package com.healerjean.proj.data.bo.batch.stream;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.experimental.Accessors;
import java.util.List;
import java.util.concurrent.Executor;
/**
* BatchFunctionInvokeBO
*
* @author zhangyujin
* @date 2024/9/24
*/
@EqualsAndHashCode(callSuper = true)
@Accessors(chain = true)
@Data
public class BatchFunctionInvokeBO extends BatchInvokeBO {
/**
* batchFunctions
*/
private List<BatchFunctionBO> batchFunctions;
/**
* functionOf
*
* @param batchFunctions batchFunctions
* @return {@link BatchFunctionInvokeBO}
*/
public static BatchFunctionInvokeBO of(Executor executor, List<BatchFunctionBO> batchFunctions) {
BatchFunctionInvokeBO invoker = new BatchFunctionInvokeBO();
invoker.setBatchFunctions(batchFunctions);
invoker.setExecutor(executor);
return invoker;
}
}
5)BatchFunctionBO
package com.healerjean.proj.data.bo.batch.stream;
import com.healerjean.proj.service.RedisService;
import lombok.Data;
import lombok.experimental.Accessors;
import java.io.Serializable;
import java.util.function.Function;
/**
* 批量消费
*
* @author zhangyujin
* @date 2024/6/14
*/
@Accessors(chain = true)
@Data
public class BatchFunctionBO implements Serializable {
/**
* serialVersionUID
*/
private static final long serialVersionUID = -7922977872203781755L;
/**
* 请求
*/
private Function<Object, Object> function;
/**
* 请求对象
*/
private ReqBusinessBO reqBusiness;
/**
* 返回对象
*/
private ResBusinessBO resBusiness;
/**
* instance
*
*/
public static BatchFunctionBO instance() {
return new BatchFunctionBO()
.setReqBusiness(new ReqBusinessBO())
.setResBusiness(new ResBusinessBO());
}
@Accessors(chain = true)
@Data
public static class ReqBusinessBO{
/**
* 任务名
*/
private String name;
/**
* 请求对象
*/
private Object req;
/**
* 幂等对象
*/
private IdempotentBO idempotent;
/**
* 幂等对象
*/
@Accessors(chain = true)
@Data
public static class IdempotentBO{
/**
* 幂等唯一Id
*/
private String uuid;
/**
* 多久幂等(单位s)
*/
private Integer expireSec;
/**
* 幂等操作类
*/
private RedisService redisService;
}
}
@Accessors(chain = true)
@Data
public static class ResBusinessBO{
/**
* 执行结果
*/
private Boolean invokeFlag;
/**
* 返回 对象
*/
private Object res;
/**
* 执行异常信息
*/
private Exception exception;
/**
* 消费时间
*/
private Long cost;
}
}
5)FunctionUtils
package com.healerjean.proj.utils;
import com.alibaba.fastjson.JSON;
import com.healerjean.proj.config.ThreadPoolConfiguration;
import com.healerjean.proj.data.bo.batch.stream.BatchConsumerBO;
import com.healerjean.proj.data.bo.batch.stream.BatchConsumerInvokeBO;
import com.healerjean.proj.data.bo.batch.stream.BatchFunctionBO;
import com.healerjean.proj.data.bo.batch.stream.BatchFunctionInvokeBO;
import com.healerjean.proj.service.RedisService;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.compress.utils.Lists;
import org.junit.Test;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Executor;
import java.util.function.Consumer;
/**
* FunctionUtils
*
* @author zhangyujin
* @date 2024/4/2
*/
@Slf4j
public class FunctionUtils {
/**
* 调用函数,失败返回具体任务
*
* @param function function
*/
public static BatchFunctionBO invokeFunction(Executor executor, BatchFunctionBO function) {
List<BatchFunctionBO> functions = Lists.newArrayList();
functions.add(function);
BatchFunctionInvokeBO batchInvoker = BatchFunctionInvokeBO.of(executor, functions);
invokeAllFunction(batchInvoker);
return functions.get(0);
}
/**
* 调用所有函数,失败返回具体任务
*
* @return {@link }
*/
@SuppressWarnings("unchecked")
public static BatchFunctionInvokeBO invokeAllFunction(BatchFunctionInvokeBO batchInvoker) {
List<BatchFunctionBO> functions = batchInvoker.getBatchFunctions();
Executor executor = batchInvoker.getExecutor();
CompletableFuture<BatchConsumerBO.ResBusinessBO>[] tasks = functions.stream().map(batchFunction -> CompletableFuture.supplyAsync(() -> {
long startTime = System.currentTimeMillis();
BatchFunctionBO.ResBusinessBO resBusiness = batchFunction.getResBusiness();
try {
Object req = batchFunction.getReqBusiness().getReq();
resBusiness.setRes(batchFunction.getFunction().apply(req));
resBusiness.setInvokeFlag(true);
resBusiness.setCost(System.currentTimeMillis() - startTime);
} catch (Exception e) {
resBusiness.setInvokeFlag(false);
resBusiness.setException(e);
resBusiness.setCost(System.currentTimeMillis() - startTime);
log.info("[ExceptionUtils#invokeAllFunctionFailException] taskName:{}, req:{}", batchFunction.getReqBusiness().getName(), JSON.toJSONString(batchFunction.getReqBusiness().getName()), e);
}
return resBusiness;
}, executor)).toArray(CompletableFuture[]::new);
CompletableFuture.allOf(tasks).join();
return batchInvoker;
}
/**
* 调用消费者,失败返回具体任务
*
* @param consumer function
*/
public static BatchConsumerBO invokeConsumer(Executor executor, BatchConsumerBO consumer) {
List<BatchConsumerBO> consumers = Lists.newArrayList();
consumers.add(consumer);
BatchConsumerInvokeBO batchConsumerInvoke = BatchConsumerInvokeBO.of(executor, consumers);
invokeAllConsumer(batchConsumerInvoke);
return batchConsumerInvoke.getBatchConsumers().get(0);
}
/**
* 调用所有消费者,失败返回具体任务
*
* @return {@link }
*/
@SuppressWarnings("unchecked")
public static BatchConsumerInvokeBO invokeAllConsumer(BatchConsumerInvokeBO batchConsumerInvoke) {
List<BatchConsumerBO> batchConsumers = batchConsumerInvoke.getBatchConsumers();
Executor executor = batchConsumerInvoke.getExecutor();
CompletableFuture<BatchConsumerBO.ResBusinessBO>[] tasks = batchConsumers.stream().map(batchConsumer -> CompletableFuture.supplyAsync(() -> {
long startTime = System.currentTimeMillis();
BatchConsumerBO.ResBusinessBO resBusiness = batchConsumer.getResBusiness();
BatchConsumerBO.ReqBusinessBO reqBusiness = batchConsumer.getReqBusiness();
BatchConsumerBO.ReqBusinessBO.IdempotentBO idempotent = reqBusiness.getIdempotent();
try {
idempotentInvoke(batchConsumer.getConsumer(), reqBusiness.getReq(), idempotent);
resBusiness.setInvokeFlag(true);
resBusiness.setCost(System.currentTimeMillis() - startTime);
} catch (Exception e) {
resBusiness.setInvokeFlag(false);
resBusiness.setException(e);
resBusiness.setCost(System.currentTimeMillis() - startTime);
log.info("[ExceptionUtils#invokeAllConsumerFailException] taskName:{}, req:{}", reqBusiness.getName(), JSON.toJSONString(reqBusiness.getReq()), e);
}
return resBusiness;
}, executor)).toArray(CompletableFuture[]::new);
CompletableFuture.allOf(tasks).join();
return batchConsumerInvoke;
}
/**
* 幂等
*/
public static <R> void idempotentInvoke(Consumer<R> consumer, R r, BatchConsumerBO.ReqBusinessBO.IdempotentBO idempotent) {
if (Objects.isNull(idempotent)) {
consumer.accept(r);
return;
}
RedisService redisService = idempotent.getRedisService();
String uuid = idempotent.getUuid();
String idempotentFlag = redisService.get(uuid);
if (Objects.nonNull(idempotentFlag)) {
return;
}
consumer.accept(r);
redisService.set(uuid, "1", idempotent.getExpireSec());
}
}
6)验证
/**
* testInvokeAllConsumerFailException
*
*/
@Test
public void testInvokeAllFunctionFailException(){
BatchFunctionBO ironManFunction = BatchFunctionBO.instance();
ironManFunction.getReqBusiness().setReq("ironMan").setName("fly");
ironManFunction.setFunction(req-> "success");
BatchFunctionBO thorFunction = BatchFunctionBO.instance();
thorFunction.getReqBusiness().setReq(123).setName("jump");
thorFunction.setFunction(req->{
int i = 1/0 ;
return "fail";
});
List<BatchFunctionBO> list = Lists.newArrayList();
list.add(ironManFunction);
list.add(thorFunction);
BatchFunctionInvokeBO batchFunctionInvoke = BatchFunctionInvokeBO.of(ThreadPoolConfiguration.THREAD_POOL_TASK_EXECUTOR, list);
invokeAllFunction(batchFunctionInvoke);
log.info("result:{}", JSON.toJSONString(batchFunctionInvoke.getBatchFunctions()));
}
/**
* testInvokeAllConsumerFailException
*
*/
@Test
public void testInvokeAllConsumerFailException(){
List<BatchConsumerBO> list = Lists.newArrayList();
BatchConsumerBO ironManConsumer = BatchConsumerBO.instance();
ironManConsumer.getReqBusiness().setReq("ironMan").setName("fly");
ironManConsumer.setConsumer("ironMan"::equals);
for (int i = 0; i < 1000; i++) {
BatchConsumerBO thorConsumer = BatchConsumerBO.instance();
int finalI = i;
thorConsumer.setConsumer(req->{
try {
Thread.sleep(100L);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
// int i = 1/0 ;
log.info("finalI:{}", finalI);
});
thorConsumer.getReqBusiness().setReq("thor" + i).setName("jump" + i);
list.add(thorConsumer);
}
list.add(ironManConsumer);
BatchConsumerInvokeBO batchConsumerInvoke = BatchConsumerInvokeBO.of(ThreadPoolConfiguration.THREAD_POOL_TASK_EXECUTOR, list);
invokeAllConsumer(batchConsumerInvoke);
log.info("result:{}", JSON.toJSONString(batchConsumerInvoke.getBatchConsumers()));
}